Visual exploration of genetic likelihood space

Linkage analysis is used to localize human disease genes on the genome and it can involve the exploration and interpretation of a seven-dimensional genetic likelihood space. Existing genetic likelihood exploration techniques are quite cumbersome and slow, and do not help provide insight into the shape and features of the high-dimensional likelihood surface. The objective of our visualization is to provide an efficient visual exploration of the complex genetic likelihood space so that researchers can assimilate more information in the least possible time. In this paper, we present new visualization tools for interactive and efficient exploration of the multi-dimensional likelihood space. Our tools provide interactive manipulation of active ranges of the six model parameters determining the dependent variable, scaled genetic likelihood, or HLOD. Using filtering, color, and an approach inspired by "worlds-within-worlds" [5, 6], researchers can quickly obtain a more informative and insightful visual interpretation of the space.

[1]  Mehdi Dastani,et al.  The Role of Visual Perception in Data Visualization , 2002, J. Vis. Lang. Comput..

[2]  Ted Mihalisin,et al.  Visualizing a scalar field on an N-dimensional lattice , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[3]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[4]  Steven K. Feiner,et al.  Visualizing n-dimensional virtual worlds with n-vision , 1990, I3D '90.

[5]  Richard A. Becker,et al.  Brushing scatterplots , 1987 .

[6]  J. V. van Wijk,et al.  HyperSlice: visualization of scalar functions of many variables , 1993, VIS '93.

[7]  Matthew O. Ward,et al.  Exploring N-dimensional databases , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[8]  J. Ott Estimation of the recombination fraction in human pedigrees: efficient computation of the likelihood for human linkage studies. , 1974, American journal of human genetics.

[9]  S E Hodge,et al.  Direct power comparisons between simple LOD scores and NPL scores for linkage analysis in complex diseases. , 1999, American journal of human genetics.

[10]  Veronica J. Vieland,et al.  HLODs, Trait Models, and Ascertainment: Implications of Admixture for Parameter Estimation and Linkage Detection , 2002, Human Heredity.

[11]  Matthew O. Ward,et al.  Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering , 2004, IEEE Symposium on Information Visualization.

[12]  R. Daniel Bergeron,et al.  Interactive data exploration with a supercomputer , 1991, Proceeding Visualization '91.

[13]  Matthew O. Ward,et al.  XmdvTool: integrating multiple methods for visualizing multivariate data , 1994, Proceedings Visualization '94.

[14]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[15]  Pak Chung Wong,et al.  30 Years of Multidimensional Multivariate Visualization , 1994, Scientific Visualization.

[16]  Jeff Beddow,et al.  Shape coding of multidimensional data on a microcomputer display , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[17]  Alberto M. Segre,et al.  Scientific Visualization of Multidimensional Data: Genetic Likelihood Visualization , 2005 .