Recent Advances in Group III–V Nanowire Infrared Detectors

[1]  Bahram Nabet,et al.  Picosecond response times in GaAs/AlGaAs core/shell nanowire-based photodetectors , 2011 .

[2]  Gerhard Abstreiter,et al.  Photocurrents in a Single InAs Nanowire/Silicon Heterojunction. , 2015, ACS nano.

[3]  Jared J. Hou,et al.  III–V nanowires: synthesis, property manipulations, and device applications , 2015 .

[4]  E. Schubert Light-Emitting Diodes by E. Fred Schubert , 2006 .

[5]  M. Bichler,et al.  Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy , 2010 .

[6]  A. Rogalski Infrared detectors: an overview , 2002 .

[7]  S. Krishna,et al.  640$\,\times\,$512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array , 2007, IEEE Journal of Quantum Electronics.

[8]  Ning Han,et al.  Synthesis and characterizations of ternary InGaAs nanowires by a two-step growth method for high-performance electronic devices. , 2012, ACS nano.

[9]  P. Dapkus,et al.  Large area, low capacitance, GaAs nanowire photodetector with a transparent Schottky collecting junction , 2013 .

[10]  Michael E. Reimer,et al.  Single photon emission and detection at the nanoscale utilizing semiconductor nanowires , 2011 .

[11]  Baolai Liang,et al.  Surface plasmon-enhanced nanopillar photodetectors. , 2011, Nano letters.

[12]  Nico Lovergine,et al.  III-V nanowires by self-assembly MOVPE technology for novel and efficient opto-electronic and photovoltaic devices , 2012, OPTO.

[13]  Zhiyong Fan,et al.  Diameter-dependent electron mobility of InAs nanowires. , 2009, Nano letters.

[14]  E. Bakkers,et al.  Surface passivated InAs/InP core/shell nanowires , 2010 .

[15]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[16]  K. Bertness,et al.  Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy , 2008 .

[17]  Chao Li,et al.  Diameter‐Controlled Growth of Single‐Crystalline In2O3 Nanowires and Their Electronic Properties , 2003 .

[18]  George T. Wang,et al.  Highly aligned, template-free growth and characterization of vertical GaN nanowires on sapphire by metal–organic chemical vapour deposition , 2006 .

[19]  David M. Wilt,et al.  MOCVD growth of lattice-matched and mismatched InGaAs materials for thermophotovoltaic energy conversion , 2003 .

[20]  Lars Samuelson,et al.  Solid-phase diffusion mechanism for GaAs nanowire growth , 2004, Microscopy and Microanalysis.

[21]  Huiyun Liu,et al.  Ten-Fold Enhancement of InAs Nanowire Photoluminescence Emission with an InP Passivation Layer. , 2017, Nano letters.

[22]  Jared J. Hou,et al.  Manipulated Growth of GaAs Nanowires: Controllable Crystal Quality and Growth Orientations via a Supersaturation-Controlled Engineering Process , 2012 .

[23]  Philippe Caroff,et al.  Giant, level-dependent g factors in InSb nanowire quantum dots. , 2009, Nano letters.

[24]  L. Lauhon,et al.  Alternative catalysts for VSS growth of silicon and germanium nanowires , 2009 .

[25]  Zhi Zheng,et al.  Nanostructured Materials and Architectures for Advanced Infrared Photodetection , 2017 .

[26]  J. Etheridge,et al.  Enhanced minority carrier lifetimes in GaAs/AlGaAs core-shell nanowires through shell growth optimization. , 2013, Nano letters.

[27]  Michael L. Roukes,et al.  Very High Frequency Silicon Nanowire Electromechanical Resonators , 2007 .

[28]  Zhiqiang Niu,et al.  Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays , 2018, Nano Research.

[29]  J. Ho,et al.  Crystal Orientation Controlled Photovoltaic Properties of Multilayer GaAs Nanowire Arrays. , 2016, ACS nano.

[30]  F. Capasso,et al.  Electrical and optical properties of InP nanowire ensemble p+–i–n+ photodetectors , 2012, Nanotechnology.

[31]  L. M. Smith,et al.  Room temperature photocurrent spectroscopy of single zincblende and wurtzite InP nanowires , 2009 .

[32]  G. Wagner,et al.  MOVPE growth and real structure of vertical-aligned GaAs nanowires , 2007 .

[33]  Cesare Soci,et al.  Nanowire photodetectors. , 2010, Journal of nanoscience and nanotechnology.

[34]  Jiansheng Jie,et al.  High-Responsivity, High-Detectivity, Ultrafast Topological Insulator Bi2Se3/Silicon Heterostructure Broadband Photodetectors. , 2016, ACS nano.

[35]  H. Zeng,et al.  Triangle-, tripod-, and tetrapod-branched ITO nanocrystals for anisotropic infrared plasmonics. , 2017, Nanoscale.

[36]  J. Ho,et al.  Approaching the Hole Mobility Limit of GaSb Nanowires. , 2015, ACS nano.

[37]  Ivo Rendina,et al.  Near-Infrared Sub-Bandgap All-Silicon Photodetectors: State of the Art and Perspectives , 2010, Sensors.

[38]  R. LaPierre,et al.  Photoluminescence and photocurrent from InP nanowires with InAsP quantum dots grown on Si by molecular beam epitaxy , 2015, Nanotechnology.

[39]  Yizheng Jin,et al.  Solution-processed, high-performance light-emitting diodes based on quantum dots , 2014, Nature.

[40]  Hao Wang High gain single GaAs nanowire photodetector , 2013 .

[41]  W. Lu,et al.  Distinct photocurrent response of individual GaAs nanowires induced by n-type doping. , 2012, ACS nano.

[42]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[43]  Ningfeng Huang,et al.  Electrical and optical characterization of surface passivation in GaAs nanowires. , 2012, Nano letters.

[44]  X. Duan,et al.  Band‐Selective Infrared Photodetectors with Complete‐Composition‐Range InAsxP1‐x Alloy Nanowires , 2014, Advanced materials.

[45]  Yongwoo Kwon,et al.  Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots. , 2014, ACS nano.

[46]  A. Alec Talin,et al.  A Perspective on Nanowire Photodetectors: Current Status, Future Challenges, and Opportunities , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[47]  Haibo Zeng,et al.  A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors , 2009, Sensors.

[48]  Myung-Ho Bae,et al.  Short-wavelength infrared photodetector on Si employing strain-induced growth of very tall InAs nanowire arrays , 2015, Scientific Reports.

[49]  Shiang-Feng Tang,et al.  InAs/GaAs quantum dot infrared photodetector (QDIP) with double Al/sub 0.3/Ga/sub 0.7/As blocking barriers , 2002 .

[50]  Zhiyong Fan,et al.  Single InAs nanowire room-temperature near-infrared photodetectors. , 2014, ACS nano.

[51]  Weida Hu,et al.  Photogating in Low Dimensional Photodetectors , 2017, Advanced science.

[52]  V. Bulović,et al.  Emergence of colloidal quantum-dot light-emitting technologies , 2012, Nature Photonics.

[53]  T. W. Case Notes on the Change of Resistance of Certain Substances in Light , 1917 .

[54]  Yong Ding,et al.  Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection. , 2009, Nano letters.

[55]  Edwin Yue-Bun Pun,et al.  Recent developments in III–V semiconducting nanowires for high-performance photodetectors , 2017 .

[56]  A. Persano,et al.  Polarization anisotropy of individual core/shell GaAs/AlGaAs nanowires by photocurrent spectroscopy , 2011 .

[57]  Dong Ha Kim,et al.  Ordered arrays of <100>-oriented silicon nanorods by CMOS-compatible block copolymer lithography. , 2007, Nano letters.

[58]  Optical design of a mid-wavelength infrared InSb nanowire photodetector. , 2016, Nanotechnology.

[59]  Teri W. Odom,et al.  Near-field scanning photocurrent microscopy of a nanowire photodetector , 2005 .

[60]  Connie J. Chang-Hasnain,et al.  Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires , 2009 .

[61]  I. J. Fritz,et al.  Long-wavelength, InAsSb strained-layer superlattice photovoltaic infrared detectors , 1989, IEEE Electron Device Letters.

[62]  Gengfeng Zheng,et al.  Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays , 2006, Science.

[63]  J. Wu,et al.  High sensitivity of middle-wavelength infrared photodetectors based on an individual InSb nanowire , 2013, Nanoscale Research Letters.

[64]  H. Mohseni,et al.  Emerging technologies for high performance infrared detectors , 2017 .

[65]  Shaoyun Huang,et al.  Synthesis, properties, and top-gated metal–oxide–semiconductor field-effect transistors of p-type GaSb nanowires , 2013 .

[66]  H. Tan,et al.  Selective-area epitaxy of pure wurtzite InP nanowires: high quantum efficiency and room-temperature lasing. , 2014, Nano letters.

[67]  H. Zeng,et al.  Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review , 2015 .

[68]  Chii-Ruey Lin,et al.  High-gain photoconductivity in semiconducting InN nanowires , 2009 .

[69]  C. Jagadish,et al.  Room temperature GaAsSb single nanowire infrared photodetectors , 2015, Nanotechnology.

[70]  Zhenyu Yang,et al.  Analysis of the influence and mechanism of sulfur passivation on the dark current of a single GaAs nanowire photodetector , 2018, Nanotechnology.

[71]  A. Pan,et al.  Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 μm , 2015 .

[72]  Photocurrent and photoconductance properties of a GaAs nanowire , 2009, 0905.3659.

[73]  GaAs/AlGaAs nanowire photodetector. , 2014, Nano letters.

[74]  F. Capasso,et al.  Study of photocurrent generation in InP nanowire-based p+-i-n+ photodetectors , 2014, Nano Research.

[75]  N. Tajik,et al.  Improved conductivity and long-term stability of sulfur-passivated n-GaAs nanowires , 2012 .

[76]  H. Zeng,et al.  Quantum Dot Light‐Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3) , 2015, Advanced materials.

[77]  Ning Han,et al.  High-performance indium phosphide nanowires synthesized on amorphous substrates: from formation mechanism to optical and electrical transport measurements , 2012 .

[78]  A. Rogalski Infrared detectors: status and trends , 2003 .

[79]  Lars-Erik Wernersson,et al.  Diameter-Dependent photocurrent in InAsSb nanowire infrared photodetectors. , 2013, Nano letters.

[80]  H. Zeng,et al.  Anomalous plasmon resonance from confined diffusive charges: high quality and tunability from mid to far infrared wavebands. , 2016, Optics express.

[81]  Y. Arakawa,et al.  Selective-area growth of thin GaN nanowires by MOCVD , 2012 .

[82]  Stephane Evoy,et al.  Diameter-dependent electromechanical properties of GaN nanowires. , 2006, Nano letters.

[83]  S. Ray,et al.  Growth of Au capped GeO2 nanowires for visible-light photodetection , 2016 .

[84]  A. Rogalski Recent progress in infrared detector technologies , 2011 .

[85]  L. P. Kouwenhoven,et al.  Spin–orbit qubit in a semiconductor nanowire , 2010, Nature.

[86]  Chaoyi Yan,et al.  Recent Progresses in Improving Nanowire Photodetector Performances , 2012 .

[87]  Wei Lu,et al.  High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios. , 2015, Small.

[88]  Jiangtao Hu,et al.  Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes , 1999 .

[89]  X. Ren,et al.  Anomalous photoconductive behavior of a single InAs nanowire photodetector , 2015 .

[90]  S. Senz,et al.  Epitaxial growth of silicon nanowires using an aluminium catalyst , 2006, Nature nanotechnology.

[91]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[92]  Xiaoqiang Sun,et al.  Variable optical attenuator based on long-range surface plasmon polariton multimode interference coupler , 2014 .

[93]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[94]  Ning Han,et al.  Facile synthesis and growth mechanism of Ni-catalyzed GaAs nanowires on non-crystalline substrates , 2011, Nanotechnology.

[95]  Lars-Erik Wernersson,et al.  Low Leakage-Current InAsSb Nanowire Photodetectors on Silicon. , 2016, Nano letters.

[96]  A. Pan,et al.  Single-Crystalline InGaAs Nanowires for Room-Temperature High-Performance Near-Infrared Photodetectors , 2015, Nano-Micro Letters.

[97]  Kookheon Char,et al.  R/G/B/Natural White Light Thin Colloidal Quantum Dot‐Based Light‐Emitting Devices , 2014, Advanced materials.

[98]  Michael E. Reimer,et al.  Avalanche amplification of a single exciton in a semiconductor nanowire , 2012, Nature Photonics.

[99]  Younan Xia,et al.  Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy , 2003 .

[100]  Diana L. Huffaker,et al.  Photoconductive gain in patterned nanopillar photodetector arrays , 2010 .

[101]  Konstantin G. Kornev,et al.  Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites , 2010 .

[102]  Tianyou Zhai,et al.  One-dimensional inorganic nanostructures: synthesis, field-emission and photodetection. , 2011, Chemical Society reviews.

[103]  P. Norton HgCdTe Infrared Detectors , 2002 .

[104]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.

[105]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[106]  J. Ho,et al.  Complementary Metal Oxide Semiconductor-Compatible, High-Mobility, ⟨111⟩-Oriented GaSb Nanowires Enabled by Vapor-Solid-Solid Chemical Vapor Deposition. , 2017, ACS nano.

[107]  W. Lu,et al.  Anomalous and Highly Efficient InAs Nanowire Phototransistors Based on Majority Carrier Transport at Room Temperature , 2014, Advanced materials.

[108]  Sanghun Jeon,et al.  Hot Carrier Trapping Induced Negative Photoconductance in InAs Nanowires toward Novel Nonvolatile Memory. , 2015, Nano letters.

[109]  Jared J. Hou,et al.  GaAs nanowires: from manipulation of defect formation to controllable electronic transport properties. , 2013, ACS nano.

[110]  E. Pelucchi,et al.  Hot-electron injection in Au nanorod-ZnO nanowire hybrid device for near-infrared photodetection. , 2014, Nano letters.

[111]  X. Ren,et al.  Formation mechanism and optical properties of InAs quantum dots on the surface of GaAs nanowires. , 2012, Nano letters.

[112]  Baolai Liang,et al.  Self-catalyzed epitaxial growth of vertical indium phosphide nanowires on silicon. , 2009, Nano letters.

[113]  L. Samuelson,et al.  Infrared photodetectors in heterostructure nanowires. , 2006, Nano letters.

[114]  Michael E. Reimer,et al.  Single quantum dot nanowire photodetectors , 2010 .

[115]  Wei Lu,et al.  Visible Light-Assisted High-Performance Mid-Infrared Photodetectors Based on Single InAs Nanowire. , 2016, Nano letters.

[116]  Charles M. Lieber,et al.  Synthesis of p-Type Gallium Nitride Nanowires for Electronic and Photonic Nanodevices , 2003 .

[117]  Xiangfeng Duan,et al.  Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires , 2001, Science.

[118]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[119]  Lin-Bao Luo,et al.  Near‐Infrared‐Light Photodetectors Based on One‐Dimensional Inorganic Semiconductor Nanostructures , 2017 .

[120]  Chennupati Jagadish,et al.  Growth temperature and V/III ratio effects on the morphology and crystal structure of InP nanowires , 2010 .

[121]  Nibir K. Dhar,et al.  Development of high performance radiation hardened antireflection coatings for LWIR and multicolor IR focal plane arrays , 2006, SPIE Defense + Commercial Sensing.

[122]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[123]  G. Shen,et al.  High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared , 2013, Nano Research.

[124]  H. Lüth,et al.  Photoluminescence and intrinsic properties of MBE-grown InN nanowires. , 2006, Nano letters.

[125]  Zhiyong Fan,et al.  When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors. , 2016, Nano letters.

[126]  A. Rogalski,et al.  Third-generation infrared photodetector arrays , 2009 .

[127]  Gilbert W. Smith,et al.  Dilute antimonide nitrides for very long wavelength infrared applications , 2006, SPIE Defense + Commercial Sensing.

[128]  Majid Minary-Jolandan,et al.  A Review of Mechanical and Electromechanical Properties of Piezoelectric Nanowires , 2012, Advanced materials.

[129]  Polarity and growth directions in Sn-seeded GaSb nanowires. , 2017, Nanoscale.

[130]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[131]  Ning Han,et al.  Crystalline GaSb nanowires synthesized on amorphous substrates: from the formation mechanism to p-channel transistor applications. , 2013, ACS applied materials & interfaces.

[132]  Ning Han,et al.  Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires , 2014, Nature Communications.

[133]  H. Xu,et al.  Room-temperature near-infrared photodetectors based on single heterojunction nanowires. , 2014, Nano letters.

[134]  W. Lu,et al.  Self-Assembly Growth of In-Rich InGaAs Core-Shell Structured Nanowires with Remarkable Near-Infrared Photoresponsivity. , 2017, Nano letters.

[135]  P. Krogstrup,et al.  Single-nanowire solar cells beyond the Shockley-Queisser limit , 2013, 1301.1068.

[136]  K. Char,et al.  Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method. , 2010, Nano letters.

[137]  Dmitri O. Klenov,et al.  Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. , 2005, Nano letters.

[138]  X. Ren,et al.  A single crystalline InP nanowire photodetector , 2016 .

[139]  Jong‐Min Lee,et al.  A Microribbon Hybrid Structure of CoOx-MoC Encapsulated in N-Doped Carbon Nanowire Derived from MOF as Efficient Oxygen Evolution Electrocatalysts. , 2017, Small.

[140]  Diana L. Huffaker,et al.  High Quantum Efficiency Nanopillar Photodiodes Overcoming the Diffraction Limit of Light. , 2016, Nano letters.

[141]  Peter Fromherz,et al.  Silicon Chip for Electronic Communication Between Nerve Cells by Non‐invasive Interfacing and Analog–Digital Processing , 2002 .

[142]  R. Chapman,et al.  Detectivity limits for diffused junction PbSnTe detectors , 1975 .