Marine chemical technology and sensors for marine waters: potentials and limits.

A significant need exists for in situ sensors that can measure chemical species involved in the major processes of primary production (photosynthesis and chemosynthesis) and respiration. Some key chemical species are O2, nutrients (N and P), micronutrients (metals), pCO2, dissolved inorganic carbon (DIC), pH, and sulfide. Sensors need to have excellent detection limits, precision, selectivity, response time, a large dynamic concentration range, low power consumption, robustness, and less variation of instrument response with temperature and pressure, as well as be free from fouling problems (biological, physical, and chemical). Here we review the principles of operation of most sensors used in marine waters. We also show that some sensors can be used in several different oceanic environments to detect the target chemical species, whereas others are useful in only one environment because of various limitations. Several sensors can be used truly in situ, whereas many others involve water brought into a flow cell via tubing to the analyzer in the environment or aboard ship. Multi-element sensors that measure many chemical species in the same water mass should be targeted for further development.

[1]  A. Daniel,et al.  A flow cell for on-line monitoring of metals in natural waters by voltammetry with a mercury drop electrode , 1997 .

[2]  B. Pejcic,et al.  Ion-Selective Electrode Potentiometry in Environmental Analysis , 2007 .

[3]  P. Tortell Dissolved gas measurements in oceanic waters made by membrane inlet mass spectrometry , 2005 .

[4]  D. Breitburg,et al.  Hypoxia, nitrogen, and fisheries: integrating effects across local and global landscapes. , 2009, Annual review of marine science.

[5]  P. Worsfold,et al.  Ion-Selective Microelectrodes: Principles, Design and Application , 1986 .

[6]  George Britton,et al.  UV/Visible Spectroscopy , 1995 .

[7]  P. Croot,et al.  A high precision spectrophotometric method for on-line shipboard seawater pH measurements: the automated marine pH sensor (AMpS). , 2002, Talanta.

[8]  Danielle R. Greenhow,et al.  High-resolution in situ analysis of nitrate and phosphate in the oligotrophic ocean. , 2007, Environmental science & technology.

[9]  M. Bertness,et al.  Centuries of human-driven change in salt marsh ecosystems. , 2009, Annual review of marine science.

[10]  N. Revsbech,et al.  A microsensor for nitrate based on immobilized denitrifying bacteria , 1996, Applied and environmental microbiology.

[11]  S. Richardson,et al.  Mass spectrometry in environmental sciences. , 2001, Chemical reviews.

[12]  Stefan Sommer,et al.  Evaluation of a lifetime‐based optode to measure oxygen in aquatic systems , 2006 .

[13]  M. Kühl,et al.  Dynamics of anoxygenic photosynthesis in an experimental green sulphur bacteria biofilm. , 1999, Environmental microbiology.

[14]  Mercedes Crego-Calama,et al.  Design of fluorescent materials for chemical sensing. , 2007, Chemical Society reviews.

[15]  P. Nair,et al.  A microelectrode for measuring intracellular pH. , 1967, Advances in experimental medicine and biology.

[16]  W. Cai,et al.  An Improved Potentiometric pCO2 Microelectrode , 1997 .

[17]  Timothy R. Parsons,et al.  A manual of chemical and biological methods for seawater analysis , 1984 .

[18]  Peter J. Wangersky,et al.  Methods of sampling and analysis and our concepts of ocean dynamics , 2005 .

[19]  R. Byrne,et al.  Field-deployed underwater mass spectrometers for investigations of transient chemical systems. , 2004, Talanta.

[20]  M. S. Finch,et al.  A low power ultra violet spectrophotometer for measurement of nitrate in seawater: introduction, calibration and initial sea trials , 1998 .

[21]  B. Butman,et al.  Long-Term Performance of Aanderaa Optodes and Sea-Bird SBE-43 Dissolved-Oxygen Sensors Bottom Mounted at 32 m in Massachusetts Bay , 2007 .

[22]  David M. Karl,et al.  In situ determination of oxygen and nitrogen dynamics in the upper ocean , 2002 .

[23]  S. Cary,et al.  A Continuous Flow Electrochemical Cell for Analysis of Chemical Species and Ions at High Pressure: Laboratory, Shipboard, and Hydrothermal Vent Results , 2002 .

[24]  M. Kühl,et al.  A nitrite microsensor for profiling environmental biofilms , 1997, Applied and environmental microbiology.

[25]  Ralf D. Prien,et al.  The future of chemical in situ sensors , 2007 .

[26]  S. J. Tanner,et al.  Developing standards for dissolved iron in seawater , 2007 .

[27]  Joseph Wang,et al.  Electrochemical sensors for environmental monitoring: design, development and applications. , 2004, Journal of environmental monitoring : JEM.

[28]  W. Cai,et al.  A long pathlength liquid-core waveguide sensor for real-time pCO2 measurements at sea , 2003 .

[29]  H. Kayanne,et al.  A rapid, precise potentiometric determination of total alkalinity in seawater by a newly developed flow-through analyzer designed for coastal regions , 2004 .

[30]  Chad Lembke,et al.  Development of an underwater mass-spectrometry system for in situ chemical analysis , 1999 .

[31]  S. N. White,et al.  Development of a laser Raman spectrometer for deep-ocean science , 2004 .

[32]  Hideshi Kimoto,et al.  Simultaneous vertical measurements of in situ pH and CO2 in the sea using spectrophotometric profilers , 2006 .

[33]  M. Kühl,et al.  A H2S microsensor for profiling biofilms and sediments: application in an acidic lake sediment , 1998 .

[34]  P. Worsfold,et al.  Shipboard analytical intercomparison of dissolved iron in surface waters along a north–south transect of the Atlantic Ocean , 2003 .

[35]  P. Sarradin,et al.  Fe analysis by the ferrozine method: Adaptation to FIA towards in situ analysis in hydrothermal environment. , 2005, Talanta.

[36]  Kenneth S. Johnson,et al.  In situ ultraviolet spectrophotometry for high resolution and long-term monitoring of nitrate, bromide and bisulfide in the ocean , 2002 .

[37]  G. Klinkhammer,et al.  Fiber optic spectrometers for in-situ measurements in the oceans: the ZAPS Probe , 1994 .

[38]  S. Theberge,et al.  Determination of the Electrochemical Properties of a Soluble Aqueous FeS Species Present in Sulfidic Solutions , 1997 .

[39]  W. Reeburgh Oceanic methane biogeochemistry. , 2007, Chemical reviews.

[40]  B. Larson,et al.  In situ measurement of dissolved chloride in high temperature hydrothermal fluids , 2007 .

[41]  Martial Taillefert,et al.  The Application of Electrochemical Tools for In Situ Measurements in Aquatic Systems , 2000 .

[42]  G. Friederich,et al.  Chemical variability in the Black Sea: implications of continuous vertical profiles that penetrated the oxic/anoxic interface , 1991 .

[43]  Scott M. Gallager,et al.  Chemical and Biological Sensors for Time-Series Research: Current Status and New Directions , 2004 .

[44]  N. Revsbech,et al.  Bacterium-Based NO2− Biosensor for Environmental Applications , 2004, Applied and Environmental Microbiology.

[45]  D. Lloyd,et al.  A membrane-inlet mass spectrometer miniprobe for the direct simultaneous measurement of multiple gas species with spatial resolution of 1 mm , 1996 .

[46]  Richard Camilli,et al.  NEREUS/Kemonaut, a mobile autonomous underwater mass spectrometer , 2004 .

[47]  Michael Kühl,et al.  An amperometric microsensor for the determination of H2S in aquatic environments , 1996 .

[48]  Michael D. DeGrandpre,et al.  In situ measurements of seawater pCO2 , 1995 .

[49]  Kenneth S Johnson,et al.  Chemical sensor networks for the aquatic environment. , 2007, Chemical reviews.

[50]  P. Dasgupta,et al.  Light at the end of the tunnel: recent analytical applications of liquid-core waveguides , 2004 .

[51]  Robert J Collier,et al.  Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data , 1979 .

[52]  B. Tebo,et al.  Rapid, oxygen-dependent microbial Mn(II) oxidation kinetics at sub-micromolar oxygen concentrations in the Black Sea suboxic zone , 2009 .

[53]  R. Meyer,et al.  Use of NOx- microsensors to estimate the activity of sediment nitrification and NOx- consumption along an estuarine salinity, nitrate, and light gradient , 2001 .

[54]  B. Quéguiner,et al.  A new method for nanomolar determination of silicic acid in seawater. , 2007, Analytica chimica acta.

[55]  Krishnan Rajeshwar,et al.  Environmental Electrochemistry: Fundamentals and Applications in Pollution Abatement , 1997 .

[56]  Clare E Reimers,et al.  Applications of microelectrodes to problems in chemical oceanography. , 2007, Chemical reviews.

[57]  Sheri N. White,et al.  Raman Spectroscopy in the Deep Ocean: Successes and Challenges , 2004, Applied spectroscopy.

[58]  Claudia R. Schröder,et al.  Time‐resolved pH imaging in marine sediments with a luminescent planar optode , 2006 .

[59]  R. Short,et al.  Environmental chemical mapping using an underwater mass spectrometer , 2004 .

[60]  Stephen C. Riser,et al.  Net production of oxygen in the subtropical ocean , 2008, Nature.

[61]  N. Revsbech,et al.  An oxygen microsensor with a guard cathode , 1989 .

[62]  Paul J Worsfold,et al.  Nitrogen cycling in natural waters using in situ, reagentless UV spectrophotometry with simultaneous determination of nitrate and nitrite. , 2007, Environmental science & technology.

[63]  Víctor Cerdà,et al.  Flow analysis techniques for phosphorus: an overview. , 2005, Talanta.

[64]  Abraham Katzir,et al.  New Frontiers for Mid-Infrared Sensors: Towards Deep Sea Monitoring with a Submarine FT-IR Sensor System , 2003, Applied spectroscopy.

[65]  Martial Taillefert,et al.  Remote in situ voltammetric techniques to characterize the biogeochemical cycling of trace metals in aquatic systems. , 2008, Journal of environmental monitoring : JEM.

[66]  Juliette Mignot,et al.  Control of Salinity on the Mixed Layer Depth in the World Ocean , 2006 .

[67]  Timothy M. Shank,et al.  Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: Laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA) , 2008 .

[68]  Kenneth S. Johnson,et al.  In situ osmotic analyzer for the year-long continuous determination of Fe in hydrothermal systems , 2002 .

[69]  R. Thomas Ion-sensitive intracellular microelectrodes : how to make and use them , 1978 .

[70]  Ingo Klimant,et al.  Luminescent dual sensor for time-resolved imaging of pCO2 and pO2 in aquatic systems , 2007 .

[71]  Brian K. Dable,et al.  Characterization and Quantitation of a Tertiary Mixture of Salts by Raman Spectroscopy in Simulated Hydrothermal Vent Fluid , 2006, Applied spectroscopy.

[72]  Y. Amao,et al.  Probes and Polymers for Optical Sensing of Oxygen , 2003 .

[73]  Tommy D. Dickey,et al.  Emerging ocean observations for interdisciplinary data assimilation systems , 2003 .

[74]  B. Jørgensen,et al.  The benthic boundary layer : transport processes and biogeochemistry , 2001 .

[75]  G. Luther,et al.  Development of a Gold Amalgam Voltammetric Microelectrode for the Determination of Dissolved Fe, Mn, O2, and S(-II) in Porewaters of Marine and Freshwater Sediments. , 1995, Environmental science & technology.

[76]  R. Short,et al.  Calibration of an in situ membrane inlet mass spectrometer for measurements of dissolved gases and volatile organics in seawater. , 2007, Environmental science & technology.

[77]  W. Seyfried,et al.  In situ measurement of pH and dissolved H2 in mid-ocean ridge hydrothermal fluids at elevated temperatures and pressures. , 2007, Chemical reviews.

[78]  G. Friederich,et al.  Spatial and temporal variability of the Black Sea suboxic zone , 2006 .

[79]  Feng Gao,et al.  A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[80]  Matthew C. Mowlem,et al.  Determination of nitrate and phosphate in seawater at nanomolar concentrations , 2008 .

[81]  Louis A. Codispoti,et al.  The Role of Eutrophication in the Global Proliferation of Harmful Algal Blooms , 2005 .

[82]  S Winkler,et al.  Application of ion-sensitive sensors in water quality monitoring. , 2004, Water science and technology : a journal of the International Association on Water Pollution Research.

[83]  F. Graziottin,et al.  A Novel Voltammetric In-Situ Profiling System for ContinuousReal-Time Monitoring of Trace Elements in Natural Waters , 1998 .

[84]  G. McMurtry,et al.  Mass SURFER: a low-power underwater mass spectrometer for monitoring dissolved gas, solutes and large organic compounds , 2001, MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295).

[85]  M. Taillefert,et al.  Environmental electrochemistry : analyses of trace element biogeochemistry , 2002 .

[86]  Paul J. Worsfold,et al.  Environmental applications of liquid-waveguide-capillary cells coupled with spectroscopic detection , 2007 .

[87]  J. T. Staley Probing nitrogen metabolism in the redox gradient of the Black Sea , 2007, Proceedings of the National Academy of Sciences.

[88]  Felix Janssen,et al.  Benthic biogeochemistry: state of the art technologies and guidelines for the future of in situ survey , 2003 .

[89]  J. Childress,et al.  In Situ Measurements of Chemical Distributions in a Deep-Sea Hydrothermal Vent Field , 1986, Science.

[90]  Andrew G. Dickson,et al.  A sensor for in situ indicator-based measurements of seawater pH , 2008 .

[91]  R. Wanninkhof,et al.  Simultaneous spectrophotometric flow-through measurements of pH, carbon dioxide fugacity, and total inorganic carbon in seawater. , 2007, Analytica chimica acta.

[92]  R. Short,et al.  Detection and quantification of chemical plumes using a portable underwater membrane introduction mass spectrometer , 2006 .

[93]  Albert M. Bradley,et al.  In situ measurement of dissolved H2 and H2S in high-temperature hydrothermal vent fluids at the Main Endeavour Field, Juan de Fuca Ridge , 2001 .

[94]  P. Worsfold,et al.  A community-wide intercomparison exercise for the determination of dissolved iron in seawater , 2006 .

[95]  Dominique Birot,et al.  A new chemical analyzer for in situ measurement of nitrate and total sulfide over hydrothermal vent biological communities , 2000 .

[96]  E. D’Asaro,et al.  A Gas Tension Device with Response Times of Minutes , 2006 .

[97]  C. Deutsch,et al.  New developments in the marine nitrogen cycle. , 2007, Chemical reviews.

[98]  E. Kaltenbacher,et al.  Use of liquid core waveguides for long pathlength absorbance spectroscopy: Principles and practice , 2001 .

[99]  E. Terrill,et al.  A micro-hole potentiostatic oxygen sensor for oceanic CTDs , 1995 .

[100]  M. Kühl,et al.  Short-term temperature effects on oxygen and sulfide cycling in a hypersaline cyanobacterial mat (Solar Lake, Egypt) , 2000 .

[101]  Claudia R. Schröder,et al.  Time-resolved pH/pO2 mapping with luminescent hybrid sensors. , 2007, Analytical chemistry.

[102]  M. Koudelka-Hep,et al.  A Novel Voltammetric Probe with Individually Addressable Gel-Integrated Microsensor Arrays for Real-Time High Spatial Resolution Concentration Profile Measurements , 2000 .

[103]  B. Tebo,et al.  Processes controlling the redox budget for the oxic/anoxic water column of the Black Sea , 2006 .

[104]  E. Kaltenbacher,et al.  Spectrophotometric measurement of total inorganic carbon in aqueous solutions using a liquid core waveguide , 2002 .

[105]  L. Codispoti,et al.  The oxygen minimum zone in the Arabian Sea during 1995 , 1999 .

[106]  N. Revsbech,et al.  A Microscale NO(3)(-) Biosensor for Environmental Applications. , 1997, Analytical chemistry.

[107]  O. Wolfbeis,et al.  Luminescence Lifetime Imaging of Oxygen, pH, and Carbon Dioxide Distribution Using Optical Sensors , 2000 .

[108]  Martin M. F. Choi,et al.  Development of an optical hydrogen sulphide sensor , 2003 .

[109]  Bernhard Lamprecht,et al.  Integrated organic electronic based optochemical sensors using polarization filters , 2008 .

[110]  T. M. Allen,et al.  Environmental applications of membrane introduction mass spectrometry. , 2002, Journal of mass spectrometry : JMS.

[111]  R. T. Short,et al.  Underwater mass spectrometers for in situ chemical analysis of the hydrosphere , 2001, Journal of the American Society for Mass Spectrometry.

[112]  H. Hansen,et al.  Determination of nutrients , 2007 .

[113]  Grady Hanrahan,et al.  Flow analysis techniques for spatial and temporal measurement of nutrients in aquatic systems , 2006 .

[114]  P. Sarradin,et al.  A new deep-sea probe for in situ pH measurement in the environment of hydrothermal vent biological communities , 2001 .

[115]  Martin W. Johnson,et al.  The oceans : their physics, chemistry, and general biology , 1943 .

[116]  G. Luther,et al.  Use of Voltammetry to Monitor O2 Using Au/Hg Electrodes and to Control Physical Sensors on an Unattended Observatory in the Delaware Bay , 2007 .

[117]  Karen J. Murray,et al.  Lateral injection of oxygen with the Bosporus plume—fingers of oxidizing potential in the Black Sea , 2003 .

[118]  R. Henthorn,et al.  Development and deployment of a precision underwater positioning system for in situ laser Raman spectroscopy in the deep ocean , 2005 .

[119]  David M. Ward,et al.  Oxygen Microelectrode That Is Insensitive to Medium Chemical Composition: Use in an Acid Microbial Mat Dominated by Cyanidium caldarium , 1983, Applied and environmental microbiology.

[120]  E. Maier‐Reimer,et al.  Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms , 2005, Nature.

[121]  D. de Beer,et al.  A fast‐responding CO2 microelectrode for profiling sediments, microbial mats, and biofilms , 1997 .

[122]  J. Sørensen,et al.  Combined Oxygen and Nitrous Oxide Microsensor for Denitrification Studies , 1988, Applied and environmental microbiology.

[123]  Timothy M. Shank,et al.  Chemical speciation drives hydrothermal vent ecology , 2001, Nature.

[124]  S. Blain,et al.  Impact of environmental factors on in situ determination of iron in seawater by flow injection analysis , 2005 .

[125]  B. V. Hamon,et al.  An inductive salinometer , 1961 .