A note on semidefinite programming relaxations for polynomial optimization over a single sphere
暂无分享,去创建一个
[1] W. Bar,et al. Useful formula for moment computation of normal random variables with nonzero means , 1971 .
[2] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[3] B. Kadomtsev,et al. Bose–Einstein condensates , 1997 .
[4] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[5] C. E. Wieman,et al. Vortices in a Bose Einstein condensate , 1999, QELS 2000.
[6] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[7] A. Leggett,et al. Bose-Einstein condensation in the alkali gases: Some fundamental concepts , 2001 .
[8] W. Ketterle,et al. Vortex nucleation in a stirred Bose-Einstein condensate. , 2001, Physical review letters.
[9] Phillip A. Regalia,et al. On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..
[10] Renato D. C. Monteiro,et al. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..
[11] Shuzhong Zhang,et al. On Cones of Nonnegative Quadratic Functions , 2003, Math. Oper. Res..
[12] F. Dalfovo,et al. Bose–Einstein Condensates , 2006 .
[13] Robert E. Mahony,et al. Optimization Algorithms on Matrix Manifolds , 2007 .
[14] Hanquan Wang,et al. A Mass and Magnetization Conservative and Energy-Diminishing Numerical Method for Computing Ground State of Spin-1 Bose-Einstein Condensates , 2007, SIAM J. Numer. Anal..
[15] Paul Tseng,et al. Approximation Bounds for Quadratic Optimization with Homogeneous Quadratic Constraints , 2007, SIAM J. Optim..
[16] Zhi-Quan Luo,et al. Semidefinite Relaxation Bounds for Indefinite Homogeneous Quadratic Optimization , 2008, SIAM J. Optim..
[17] Alexander L. Fetter. Rotating trapped Bose-Einstein condensates , 2009 .
[18] Hanquan Wang,et al. Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates , 2010, J. Comput. Phys..
[19] Ionut Danaila,et al. A New Sobolev Gradient Method for Direct Minimization of the Gross--Pitaevskii Energy with Rotation , 2009, SIAM J. Sci. Comput..
[20] Anthony Sudbery,et al. The geometric measure of multipartite entanglement and the singular values of a hypermatrix , 2010 .
[21] Shuzhong Zhang,et al. Approximation algorithms for homogeneous polynomial optimization with quadratic constraints , 2010, Math. Program..
[22] Anthony Man-Cho So,et al. Deterministic approximation algorithms for sphere constrained homogeneous polynomial optimization problems , 2011, Math. Program..
[23] Tamara G. Kolda,et al. Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..
[24] Chen Ling,et al. The Best Rank-1 Approximation of a Symmetric Tensor and Related Spherical Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..
[25] Zheng-Hai Huang,et al. Finding the extreme Z‐eigenvalues of tensors via a sequential semidefinite programming method , 2013, Numer. Linear Algebra Appl..
[26] I-Liang Chern,et al. Efficient numerical methods for computing ground states of spin-1 Bose-Einstein condensates based on their characterizations , 2013, J. Comput. Phys..
[27] Wotao Yin,et al. A feasible method for optimization with orthogonality constraints , 2013, Math. Program..
[28] Shuzhong Zhang,et al. Probability Bounds for Polynomial Functions in Random Variables , 2014, Math. Oper. Res..
[29] Li Wang,et al. Semidefinite Relaxations for Best Rank-1 Tensor Approximations , 2013, SIAM J. Matrix Anal. Appl..
[30] Weizhu Bao,et al. Ground States and Dynamics of Spin-Orbit-Coupled Bose-Einstein Condensates , 2014, SIAM J. Appl. Math..
[31] Shiqian Ma,et al. Tensor principal component analysis via convex optimization , 2012, Math. Program..
[32] Weizhu Bao,et al. A Regularized Newton Method for Computing Ground States of Bose–Einstein Condensates , 2015, Journal of Scientific Computing.