A note on semidefinite programming relaxations for polynomial optimization over a single sphere

We study two instances of polynomial optimization problem over a single sphere. The first problem is to compute the best rank-1 tensor approximation. We show the equivalence between two recent semidefinite relaxations methods. The other one arises from Bose-Einstein condensates (BEC), whose objective function is a summation of a probably nonconvex quadratic function and a quartic term. These two polynomial optimization problems are closely connected since the BEC problem can be viewed as a structured fourth-order best rank-1 tensor approximation. We show that the BEC problem is NP-hard and propose a semidefinite relaxation with both deterministic and randomized rounding procedures. Explicit approximation ratios for these rounding procedures are presented. The performance of these semidefinite relaxations are illustrated on a few preliminary numerical experiments.

[1]  W. Bar,et al.  Useful formula for moment computation of normal random variables with nonzero means , 1971 .

[2]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[3]  B. Kadomtsev,et al.  Bose–Einstein condensates , 1997 .

[4]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[5]  C. E. Wieman,et al.  Vortices in a Bose Einstein condensate , 1999, QELS 2000.

[6]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[7]  A. Leggett,et al.  Bose-Einstein condensation in the alkali gases: Some fundamental concepts , 2001 .

[8]  W. Ketterle,et al.  Vortex nucleation in a stirred Bose-Einstein condensate. , 2001, Physical review letters.

[9]  Phillip A. Regalia,et al.  On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..

[10]  Renato D. C. Monteiro,et al.  A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..

[11]  Shuzhong Zhang,et al.  On Cones of Nonnegative Quadratic Functions , 2003, Math. Oper. Res..

[12]  F. Dalfovo,et al.  Bose–Einstein Condensates , 2006 .

[13]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[14]  Hanquan Wang,et al.  A Mass and Magnetization Conservative and Energy-Diminishing Numerical Method for Computing Ground State of Spin-1 Bose-Einstein Condensates , 2007, SIAM J. Numer. Anal..

[15]  Paul Tseng,et al.  Approximation Bounds for Quadratic Optimization with Homogeneous Quadratic Constraints , 2007, SIAM J. Optim..

[16]  Zhi-Quan Luo,et al.  Semidefinite Relaxation Bounds for Indefinite Homogeneous Quadratic Optimization , 2008, SIAM J. Optim..

[17]  Alexander L. Fetter Rotating trapped Bose-Einstein condensates , 2009 .

[18]  Hanquan Wang,et al.  Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates , 2010, J. Comput. Phys..

[19]  Ionut Danaila,et al.  A New Sobolev Gradient Method for Direct Minimization of the Gross--Pitaevskii Energy with Rotation , 2009, SIAM J. Sci. Comput..

[20]  Anthony Sudbery,et al.  The geometric measure of multipartite entanglement and the singular values of a hypermatrix , 2010 .

[21]  Shuzhong Zhang,et al.  Approximation algorithms for homogeneous polynomial optimization with quadratic constraints , 2010, Math. Program..

[22]  Anthony Man-Cho So,et al.  Deterministic approximation algorithms for sphere constrained homogeneous polynomial optimization problems , 2011, Math. Program..

[23]  Tamara G. Kolda,et al.  Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..

[24]  Chen Ling,et al.  The Best Rank-1 Approximation of a Symmetric Tensor and Related Spherical Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..

[25]  Zheng-Hai Huang,et al.  Finding the extreme Z‐eigenvalues of tensors via a sequential semidefinite programming method , 2013, Numer. Linear Algebra Appl..

[26]  I-Liang Chern,et al.  Efficient numerical methods for computing ground states of spin-1 Bose-Einstein condensates based on their characterizations , 2013, J. Comput. Phys..

[27]  Wotao Yin,et al.  A feasible method for optimization with orthogonality constraints , 2013, Math. Program..

[28]  Shuzhong Zhang,et al.  Probability Bounds for Polynomial Functions in Random Variables , 2014, Math. Oper. Res..

[29]  Li Wang,et al.  Semidefinite Relaxations for Best Rank-1 Tensor Approximations , 2013, SIAM J. Matrix Anal. Appl..

[30]  Weizhu Bao,et al.  Ground States and Dynamics of Spin-Orbit-Coupled Bose-Einstein Condensates , 2014, SIAM J. Appl. Math..

[31]  Shiqian Ma,et al.  Tensor principal component analysis via convex optimization , 2012, Math. Program..

[32]  Weizhu Bao,et al.  A Regularized Newton Method for Computing Ground States of Bose–Einstein Condensates , 2015, Journal of Scientific Computing.