Fluctuation effects in the theory of microphase separation of diblock copolymers in the presence of an electric field

We generalize the Fredrickson−Helfand theory of the microphase separation in symmetric diblock copolymer melts by taking into account the influence of a time-independent homogeneous electric field on the composition fluctuations within the self-consistent Hartree approximation. We predict that electric fields suppress composition fluctuations, and consequently weaken the first-order transition. In the presence of an electric field the critical temperature of the order−disorder transition is shifted toward its mean-field value. The collective structure factor in the disordered phase becomes anisotropic in the presence of the electric field. Fluctuational modulations of the order parameter along the field direction are strongest suppressed. The latter is in accordance with the parallel orientation of the lamellae in the ordered state.