Information-Lossless Space-Time Block Codes From Crossed-Product Algebras

It is known that the Alamouti code is the only complex orthogonal design (COD) which achieves capacity and that too for the case of two transmit and one receive antenna only. Damen proposed a design for two transmit antennas, which achieves capacity for any number of receive antennas, calling the resulting space-time block code (STBC) when used with a signal set an information-lossless STBC. In this paper, using crossed-product central simple algebras, we construct STBCs for arbitrary number of transmit antennas over an a priori specified signal set. Alamouti code and quasi-orthogonal designs are the simplest special cases of our constructions. We obtain a condition under which these STBCs from crossed-product algebras are information-lossless. We give some classes of crossed-product algebras, from which the STBCs obtained are information-lossless and also of full rank. We present some simulation results for two, three, and four transmit antennas to show that our STBCs perform better than some of the best known STBCs and also that these STBCs are approximately 1 dB away from the capacity of the channel with quadrature amplitude modulation (QAM) symbols as input

[1]  B. Sundar Rajan,et al.  STBC-schemes with non-vanishing determinant for certain number of transmit antennas , 2005, ISIT.

[2]  B. Sundar Rajan,et al.  STBC-schemes with nonvanishing determinant for certain number of transmit antennas , 2005, IEEE Transactions on Information Theory.

[3]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[4]  J. Belfiore,et al.  The golden code: a 2/spl times/2 full-rate space-time code with nonvanishing determinants , 2005 .

[5]  Emanuele Viterbo,et al.  The golden code: a 2 x 2 full-rate space-time code with non-vanishing determinants , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[6]  B. Sundar Rajan,et al.  STBCs using capacity achieving designs from cyclic division algebras , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[7]  B. Sundar Rajan,et al.  Full-diversity, high-rate space-time block codes from division algebras , 2003, IEEE Trans. Inf. Theory.

[8]  B. Sundar Rajan,et al.  High-rate, full-diversity STBCs from field extensions , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[9]  Jean-Claude Belfiore,et al.  Quaternionic lattices for space-time coding , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[10]  Mohamed Oussama Damen,et al.  Universal space-time coding , 2003, IEEE Trans. Inf. Theory.

[11]  Lizhong Zheng,et al.  Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels , 2003, IEEE Trans. Inf. Theory.

[12]  Stephan ten Brink,et al.  Achieving near-capacity on a multiple-antenna channel , 2003, IEEE Trans. Commun..

[13]  X. Xia,et al.  Quasi-orthogonal space-time block codes with full diversity , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[14]  B. Sundar Rajan,et al.  An algebraic description of orthogonal designs and the uniqueness of the Alamouti code , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[15]  Xiang-Gen Xia,et al.  A design of quasi-orthogonal space-time block codes with full diversity , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[16]  B. Sundar Rajan,et al.  Optimal STBC over PSK signal sets from cyclotomic field extensions , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[17]  Babak Hassibi,et al.  High-rate codes that are linear in space and time , 2002, IEEE Trans. Inf. Theory.

[18]  Sandra Galliou,et al.  A new family of full rate, fully diverse space-time codes based on Galois theory , 2002, Proceedings IEEE International Symposium on Information Theory,.

[19]  B. S. Rajan,et al.  Space-time block codes from co-ordinate interleaved orthogonal designs , 2002, Proceedings IEEE International Symposium on Information Theory,.

[20]  B. Sethuraman,et al.  STBC from field extensions of the rational field , 2002, Proceedings IEEE International Symposium on Information Theory,.

[21]  Constantinos B. Papadias,et al.  Improved quasi-orthogonal codes , 2002, 2002 IEEE Wireless Communications and Networking Conference Record. WCNC 2002 (Cat. No.02TH8609).

[22]  Karim Abed-Meraim,et al.  Diagonal algebraic space-time block codes , 2002, IEEE Trans. Inf. Theory.

[23]  Mohamed Oussama Damen,et al.  A construction of a space-time code based on number theory , 2002, IEEE Trans. Inf. Theory.

[24]  Ari Hottinen,et al.  Square-matrix embeddable space-time block codes for complex signal constellations , 2002, IEEE Trans. Inf. Theory.

[25]  B. Hassibi,et al.  On the expected complexity of sphere decoding , 2001, Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256).

[26]  Ari Hottinen,et al.  Complex space-time block codes for four Tx antennas , 2000, Globecom '00 - IEEE. Global Telecommunications Conference. Conference Record (Cat. No.00CH37137).

[27]  Hamid Jafarkhani,et al.  A quasi-orthogonal space-time block code , 2000, 2000 IEEE Wireless Communications and Networking Conference. Conference Record (Cat. No.00TH8540).

[28]  Petre Stoica,et al.  Space-Time Diversity Using Orthogonal and Amicable Orthogonal Designs , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[29]  Mohamed Oussama Damen,et al.  Lattice code decoder for space-time codes , 2000, IEEE Communications Letters.

[30]  M. O. Damen,et al.  Generalised sphere decoder for asymmetrical space-time communication architecture , 2000 .

[31]  E. Telatar,et al.  On the capacity of multi-antenna Gaussian channels , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[32]  A. Robert Calderbank,et al.  Space-Time block codes from orthogonal designs , 1999, IEEE Trans. Inf. Theory.

[33]  Emanuele Viterbo,et al.  A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.

[34]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[35]  Emanuele Viterbo,et al.  Signal Space Diversity: A Power- and Bandwidth-Efficient Diversity Technique for the Rayleigh Fading Channel , 1998, IEEE Trans. Inf. Theory.

[36]  M. J. Gans,et al.  On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas , 1998, Wirel. Pers. Commun..

[37]  A. Robert Calderbank,et al.  Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.

[38]  N. Jacobson Finite-dimensional division algebras over fields , 1996 .

[39]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[40]  J. Guey,et al.  Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels , 1996, Proceedings of Vehicular Technology Conference - VTC.

[41]  N. Jacobson,et al.  Basic Algebra II , 1989 .

[42]  U. Fincke,et al.  Improved methods for calculating vectors of short length in a lattice , 1985 .

[43]  A. Goldie NON COMMUTATIVE RINGS (CARUS MATHEMATICAL MONOGRAPHS NO. 15) , 1970 .

[44]  H. E. Slaught THE CARUS MATHEMATICAL MONOGRAPHS , 1923 .

[45]  Kevin P. Murphy Information theory , 1998 .

[46]  Chau Yuen,et al.  Quasi-Orthogonal Space-Time Block Code , 2007, Communications and Signal Processing.

[47]  P. Vijay Kumar,et al.  Explicit, Minimum-Delay Space-Time Codes Achieving The Diversity-Multiplexing Gain Tradeo , 2004 .

[48]  J. Belfiore,et al.  Algebraic 3x3, 4x4, 6x6 Space-Time Codes with non-vanishing Determinants , 2004 .

[49]  J. Belfiore,et al.  Algebraic 3 × 3 , 4 × 4 and 6 × 6 Space-Time Codes with non-vanishing Determinants , 2004 .

[50]  A. Robert Calderbank,et al.  Correction to "Space-Time codes from orthogonal designs" , 2000, IEEE Trans. Inf. Theory.

[51]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[52]  P. McCarthy Algebraic extensions of fields , 1966 .

[53]  Richard Brauer,et al.  Über den Index und den Exponenten von Divisionsalgebren , 1933 .