A Novel Signaling Pathway from Rod Photoreceptors to Ganglion Cells in Mammalian Retina

[1]  Pamela Reinagel,et al.  Decoding visual information from a population of retinal ganglion cells. , 1997, Journal of neurophysiology.

[2]  D. Baylor,et al.  Mosaic arrangement of ganglion cell receptive fields in rabbit retina. , 1997, Journal of neurophysiology.

[3]  M. Meister,et al.  The Light Response of Retinal Ganglion Cells Is Truncated by a Displaced Amacrine Circuit , 1997, Neuron.

[4]  T. Hughes Are there ionotropic glutamate receptors on the rod bipolar cell of the mouse retina? , 1997, Visual Neuroscience.

[5]  H. Wässle,et al.  Glutamate Responses of Bipolar Cells in a Slice Preparation of the Rat Retina , 1996, The Journal of Neuroscience.

[6]  C. Cepko,et al.  Cell fate determination in the vertebrate retina. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[7]  D. Baylor,et al.  Concerted Signaling by Retinal Ganglion Cells , 1995, Science.

[8]  D. Baylor,et al.  An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[9]  H. Wässle,et al.  Immunocytochemical identification of cone bipolar cells in the rat retina , 1995, The Journal of comparative neurology.

[10]  J. L. Schnapf,et al.  Photovoltage of rods and cones in the macaque retina. , 1995, Science.

[11]  G. H. Jacobs,et al.  Regional variations in the relative sensitivity to UV light in the mouse retina , 1995, Visual Neuroscience.

[12]  R. Masland,et al.  The organization of the inner nuclear layer of the rabbit retina , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  Jean-Claude Martinou,et al.  Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia , 1994, Neuron.

[14]  J. Nathans,et al.  A sequence upstream of the mouse blue visual pigment gene directs blue cone-specific transgene expression in mouse retinas , 1994, Visual Neuroscience.

[15]  Markus Meister,et al.  Multi-neuronal signals from the retina: acquisition and analysis , 1994, Journal of Neuroscience Methods.

[16]  P Sterling,et al.  Horizontal cells in cat and monkey retina express different isoforms of glutamic acid decarboxylase , 1994, Visual Neuroscience.

[17]  J. Bishop,et al.  Macrophages are required for cell death and tissue remodeling in the developing mouse eye , 1993, Cell.

[18]  H. Wässle,et al.  Electron microscopic analysis of the rod pathway of the rat retina , 1993, The Journal of comparative neurology.

[19]  L. Pinto,et al.  Response properties of ganglion cells in the isolated mouse retina , 1993, Visual Neuroscience.

[20]  D. Dacey,et al.  Recoverin immunoreactivity in mammalian cone bipolar cells , 1993, Visual Neuroscience.

[21]  Peter H. Schiller,et al.  The ON and OFF channels of the visual system , 1992, Trends in Neurosciences.

[22]  G. Aguirre,et al.  Unique topographic separation of two spectral classes of cones in the mouse retina , 1992, The Journal of comparative neurology.

[23]  Donald J. Zack,et al.  A locus control region adjacent to the human red and green visual pigment genes , 1992, Neuron.

[24]  R. Shapley,et al.  Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus , 1992, Nature.

[25]  G. H. Jacobs,et al.  Retinal receptors in rodents maximally sensitive to ultraviolet light , 1991, Nature.

[26]  Scott Nawy,et al.  cGMP-gated conductance in retinal bipolar cells is suppressed by the photoreceptor transmitter , 1991, Neuron.

[27]  PR Martin,et al.  Rod bipolar cells in the macaque monkey retina: immunoreactivity and connectivity , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  M. Yamashita,et al.  Responses of rod bipolar cells isolated from the rat retina to the glutamate agonist 2-amino-4-phosphonobutyric acid (APB) , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  H. Wässle,et al.  The rod bipolar cell of the mammalian retina , 1991, Visual Neuroscience.

[30]  S. M. Wu,et al.  Feedforward lateral inhibition in retinal bipolar cells: input-output relation of the horizontal cell-depolarizing bipolar cell synapse. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[31]  K. Yau,et al.  Light Adaptation in Retinal Rods of the Rabbit and Two Other Nonprimate Mammals Nakatani Et Al. Light Adaptation M Rabbit and Other Mammalian Rods Experiments on Cattle and Rat , 1991 .

[32]  P. Emson,et al.  Localization of two calcium binding proteins, calbindin (28 kD) and parvalbumin (12 kD), in the vertebrate retina , 1990, The Journal of comparative neurology.

[33]  Ursula Greferath,et al.  Rod bipolar cells in the mammalian retina show protein kinase C‐like immunoreactivity , 1990, The Journal of comparative neurology.

[34]  C. Cepko,et al.  Lineage-independent determination of cell type in the embryonic mouse retina , 1990, Neuron.

[35]  M. Raff,et al.  Rod photoreceptor development in vitro: Intrinsic properties of proliferating neuroepithelial cells change as development proceeds in the rat retina , 1990, Neuron.

[36]  I. Maxwell,et al.  Genetic ablation in transgenic mice with an attenuated diphtheria toxin A gene , 1990, Molecular and cellular biology.

[37]  A. Bernstein,et al.  Genetic ablation in transgenic mice. , 1989, Molecular biology & medicine.

[38]  P. Sarthy,et al.  Localization of L‐glutamic acid decarboxylase mRNA in cat retinal horizontal cells by in situ hybridization , 1989, The Journal of comparative neurology.

[39]  R. Adler,et al.  Plasticity and differentiation of embryonic retinal cells after terminal mitosis. , 1989, Science.

[40]  H. Wässle,et al.  Pharmacological modulation of the rod pathway in the cat retina. , 1988, Journal of neurophysiology.

[41]  C. Holt,et al.  Cellular determination in the xenopus retina is independent of lineage and birth date , 1988, Neuron.

[42]  S. Fisher,et al.  Ultrastructural evidence that horizontal cell axon terminals are presynaptic in the human retina , 1988, The Journal of comparative neurology.

[43]  D. Puro The Retina. An Approachable Part of the Brain , 1988 .

[44]  D. Baylor,et al.  Spectral sensitivity of cones of the monkey Macaca fascicularis. , 1987, The Journal of physiology.

[45]  I. Maxwell,et al.  Cloning, sequence determination, and expression in transfected cells of the coding sequence for the tox 176 attenuated diphtheria toxin A chain , 1987, Molecular and cellular biology.

[46]  P Sterling,et al.  Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  R. Dacheux,et al.  The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  R. W. Young Cell differentiation in the retina of the mouse , 1985, The Anatomical record.

[49]  R. Pourcho,et al.  A combined golgi and autoradiographic study of (3H)glycine‐accumulating amacrine cells in the cat retina , 1985, The Journal of comparative neurology.

[50]  T. Williams,et al.  A new microspectrophotometric method for measuring absorbance of rat photoreceptors , 1984, Vision Research.

[51]  U. Dräger,et al.  Thy-1 antigen: A ganglion cell specific marker in rodent retina , 1984, Neuroscience.

[52]  Helga Kolb,et al.  Rod pathways in the retina of the cat , 1983, Vision Research.

[53]  J. Blanks,et al.  Selective lectin binding of the developing mouse retina , 1983, The Journal of comparative neurology.

[54]  Xie Ss [Thy-1 antigen]. , 1983 .

[55]  J. L. Schnapf,et al.  Differences in the kinetics of rod and cone synaptic transmission , 1982, Nature.

[56]  S. Naghshineh,et al.  Action of glutamate and aspartate analogues on rod horizontal and bipolar cells , 1981, Nature.

[57]  M. Slaughter,et al.  2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. , 1981, Science.

[58]  M. Lavail,et al.  Rods and cones in the mouse retina. II. Autoradiographic analysis of cell generation using tritiated thymidine , 1979, The Journal of comparative neurology.

[59]  M. Lavail,et al.  Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy , 1979, The Journal of comparative neurology.

[60]  R. West Bipolar and horizontal cells of the gray squirrel retina: Golgi morphology and receptor connections , 1978, Vision Research.

[61]  R. Nelson,et al.  Cat cones have rod input: A comparison of the response properties of cones and horizontal cell bodies in the retina of the cat , 1977, The Journal of comparative neurology.

[62]  Helga Kolb,et al.  A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina , 1975, Brain Research.

[63]  Helga Kolb,et al.  Rod and Cone Pathways in the Inner Plexiform Layer of Cat Retina , 1974, Science.

[64]  B. Boycott,et al.  The connections between bipolar cells and photoreceptors in the retina of the domestic cat , 1973, The Journal of comparative neurology.

[65]  H. Kolb,et al.  Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[66]  B. Boycott,et al.  Organization of the Primate Retina: Light Microscopy , 1969 .

[67]  P. Gouras,et al.  Progressive cone degeneration, dominantly inherited. , 1968, Archives of ophthalmology.

[68]  E. Berson,et al.  Histopathologic and immunohistochemical study of an autopsy eye with X-linked cone degeneration. , 1998, Archives of ophthalmology.

[69]  K. Yau,et al.  Phototransduction mechanism in retinal rods and cones. The Friedenwald Lecture. , 1994, Investigative ophthalmology & visual science.

[70]  W. G. Owen,et al.  Signal transfer from photoreceptors to bipolar cells in the retina of the tiger salamander. , 1989, Neuroscience research. Supplement : the official journal of the Japan Neuroscience Society.

[71]  M. Pangburn,et al.  The Alternative Pathway , 1986 .

[72]  D. Lawson,et al.  Target cells of vitamin D in the vertebrate retina. , 1985, Acta anatomica.

[73]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[74]  A. Mariani The neuronal organization of the outer plexiform layer of the primate retina. , 1984, International review of cytology.

[75]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[76]  S. R. Y. Cajal La rétine des vertébrés , 1892 .