Latent class models for testing monotonicity and invariant item ordering for polytomous items.

Two assumptions that are relevant to many applications using item response theory are the assumptions of monotonicity (M) and invariant item ordering (IIO). A latent class model is proposed for ordinal items with inequality constraints on the class-specific item means. This model is used as a tool for testing for violations of M and IIO. A Gibbs sampling scheme is used for estimating the model parameters. It is shown that the deviance information criterion can be used as an overall test of M and IIO, while posterior predictive checks can be used to test these assumptions at the item level. A real data application illustrates a model-fitting strategy for detecting items that violate M and IIO.

[1]  Klaas Sijtsma,et al.  Nonparametric polytomous IRT models for invariant item ordering, with results for parametric models , 1998 .

[2]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[3]  H. Hoijtink Constrained Latent Class Analysis Using the Gibbs Sampler and Posterior Predictive P-values: Applications to Educational Testing , 1998 .

[4]  S. E. Ahmed,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.

[5]  Marcel A. Croon,et al.  Investigating Mokken scalability of dichotomous items by means of ordinal latent class analysis , 1991 .

[6]  Adrian F. M. Smith,et al.  Bayesian Analysis of Constrained Parameter and Truncated Data Problems , 1991 .

[7]  P. Saama MAXIMUM LIKELIHOOD AND BAYESIAN METHODS FOR MIXTURES OF NORMAL DISTRIBUTIONS , 1997 .

[8]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[9]  H. Stern Model inference or model selection: discussion of Klugkist, Laudy, and Hoijtink (2005). , 2005, Psychological methods.

[10]  M. Stephens Dealing with label switching in mixture models , 2000 .

[11]  P. Rosenbaum,et al.  Conditional Association and Unidimensionality in Monotone Latent Variable Models , 1985 .

[12]  A. Narayanan Computer generation of dirichlet random vectors , 1990 .

[13]  Neil Henry Latent structure analysis , 1969 .

[14]  Ajay Jasra,et al.  Markov Chain Monte Carlo Methods and the Label Switching Problem in Bayesian Mixture Modeling , 2005 .

[15]  Alan Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[16]  Klaas Sijtsma,et al.  Polytomous Latent Scales for the Investigation of the Ordering of Items , 2011 .

[17]  F. Samejima Estimation of latent ability using a response pattern of graded scores , 1968 .

[18]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[19]  B. Junker,et al.  Nonparametric Item Response Theory in Action: An Overview of the Special Issue , 2001 .

[20]  Jeroen K. Vermunt,et al.  The Use of Restricted Latent Class Models for Defining and Testing Nonparametric and Parametric Item Response Theory Models , 2001 .

[21]  Paul F. Lazarsfeld,et al.  Latent Structure Analysis. , 1969 .

[22]  C. Clogg,et al.  Discrete Latent Variable Models. , 1994 .

[23]  F. Samejima Graded Response Model , 1997 .

[24]  K Sijtsma,et al.  A survey of theory and methods of invariant item ordering. , 1996, The British journal of mathematical and statistical psychology.

[25]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[26]  Rudy Ligtvoet,et al.  Investigating an Invariant Item Ordering for Polytomously Scored Items , 2010 .

[27]  Jeroen K. Vermunt,et al.  A general non-parametric approach to the analysis of ordinal categorical data , 1999 .

[28]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[29]  P. Green,et al.  Corrigendum: On Bayesian analysis of mixtures with an unknown number of components , 1997 .

[30]  Jeroen K. Vermunt,et al.  6. A General Class of Nonparametric Models for Ordinal Categorical Data , 1999 .

[31]  Radford M. Neal Bayesian Mixture Modeling , 1992 .

[32]  P. Rosenbaum Testing the conditional independence and monotonicity assumptions of item response theory , 1984 .

[33]  H. Hoijtink,et al.  Bayesian eggs and Bayesian omelettes: reply to Stern (2005). , 2005, Psychological methods.

[34]  Xiao-Li Meng,et al.  Posterior Predictive $p$-Values , 1994 .

[35]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[36]  George Karabatsos,et al.  Order-Constrained Bayes Inference for Dichotomous Models of Unidimensional Nonparametric IRT , 2004 .

[37]  M. R. Novick,et al.  Statistical Theories of Mental Test Scores. , 1971 .

[38]  Edward H. Ip,et al.  Testing for local dependency in dichotomous and polytomous item response models , 2001 .

[39]  Clifford C. Clogg,et al.  Latent Class Models for Measuring , 1988 .

[40]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[41]  Herbert Hoijtink,et al.  Bayesian methods for the analysis of inequality constrained contingency tables , 2007, Statistical methods in medical research.

[42]  Ivo W. Molenaar,et al.  Nonparametric Models for Polytomous Responses , 1997 .

[43]  Francesco Bartolucci,et al.  Likelihood inference on the underlying structure of IRT models , 2005 .

[44]  M. Karim Generalized Linear Models With Random Effects , 1991 .

[45]  Herbert Hoijtink,et al.  Inequality constrained analysis of variance: a Bayesian approach. , 2005, Psychological methods.

[46]  I. W. Molenaar,et al.  A multidimensional item response model: Constrained latent class analysis using the gibbs sampler and posterior predictive checks , 1997 .

[47]  R. Eisinga,et al.  Religion in Dutch society 95: Documentation of a national survey on religious and secular attitudes in 1995 , 1999 .

[48]  Marcel A. Croon,et al.  Latent class analysis with ordered latent classe , 1990 .

[49]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[50]  M.J.H. van Onna,et al.  Bayesian estimation and model selection in ordered latent class models for polytomous items , 2002 .