A facile strategy for the core-shell FeSiAl composites with high-efficiency electromagnetic wave absorption

[1]  Youwei Du,et al.  Stable microwave absorber derived from 1D customized heterogeneous structures of Fe3N@C , 2020 .

[2]  Shanmin Gao,et al.  Microstructural and compositional evolution of core-shell FeSiAl composites during high-temperature annealing , 2019 .

[3]  Yue Zhao,et al.  Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties , 2019, Chemical Engineering Journal.

[4]  M. Yan,et al.  A versatile strategy towards magnetic/dielectric porous heterostructure with confinement effect for lightweight and broadband electromagnetic wave absorption , 2019, Chemical Engineering Journal.

[5]  Zhichuan J. Xu,et al.  Defect Engineering in Two Common Types of Dielectric Materials for Electromagnetic Absorption Applications , 2019, Advanced Functional Materials.

[6]  Zhichuan J. Xu,et al.  Biomass-Derived Porous Carbon-Based Nanostructures for Microwave Absorption , 2019, Nano-micro letters.

[7]  Yanli Dong,et al.  Mechanical, dielectric and microwave absorption properties of FeSiAl/Al2O3 composites fabricated by hot-pressed sintering , 2019, Journal of Alloys and Compounds.

[8]  Xi Yang,et al.  Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance , 2018, Chemical Engineering Journal.

[9]  Yibin Li,et al.  Facile Synthesis of Highly Defected Silicon Carbide Sheets for Efficient Absorption of Electromagnetic Waves , 2018, The Journal of Physical Chemistry C.

[10]  Lai-fei Cheng,et al.  Enhanced Flexibility and Microwave Absorption Properties of HfC/SiC Nanofiber Mats. , 2018, ACS applied materials & interfaces.

[11]  Fenghua Liu,et al.  Self-assembly of Fe2O3/ordered mesoporous carbons for high-performance lithium-ion batteries , 2018 .

[12]  Jianguo Guan,et al.  Low-Cost Carbothermal Reduction Preparation of Monodisperse Fe3O4/C Core-Shell Nanosheets for Improved Microwave Absorption. , 2018, ACS applied materials & interfaces.

[13]  Zhichuan J. Xu,et al.  A Voltage‐Boosting Strategy Enabling a Low‐Frequency, Flexible Electromagnetic Wave Absorption Device , 2018, Advanced materials.

[14]  H. Jiang,et al.  Improving the interfacial strength of silicone resin composites by chemically grafting silica nanoparticles on carbon fiber , 2017 .

[15]  Zhijiang Wang,et al.  Controllable Fabricating Dielectric-Dielectric SiC@C Core-Shell Nanowires for High-Performance Electromagnetic Wave Attenuation. , 2017, ACS applied materials & interfaces.

[16]  Lai-fei Cheng,et al.  Laminated and Two-Dimensional Carbon-Supported Microwave Absorbers Derived from MXenes. , 2017, ACS applied materials & interfaces.

[17]  Hao Yuan,et al.  Core-shell amorphous metal oxides/metallic glassy particles for absorbing application of toxic heavy metal and electromagnetic wave , 2017 .

[18]  Yury Gogotsi,et al.  Electromagnetic interference shielding with 2D transition metal carbides (MXenes) , 2016, Science.

[19]  Lina Wu,et al.  Nature of Electromagnetic-Transparent SiO2 Shell in Hybrid Nanostructure Enhancing Electromagnetic Attenuation , 2016 .

[20]  Rencheng Jin,et al.  Preparation and magnetic properties of NiFe2O4–Fe2O3@SnO2 heterostructures , 2015 .

[21]  Lan-sun Zheng,et al.  MOF-Derived Porous Co/C Nanocomposites with Excellent Electromagnetic Wave Absorption Properties. , 2015, ACS applied materials & interfaces.

[22]  Rencheng Jin,et al.  Nonstoichiometric M-ferrite porous spheres: preparation, shape evolution and magnetic properties , 2015 .

[23]  Q. Cao,et al.  Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. , 2015, Nanoscale.

[24]  Lai-fei Cheng,et al.  Electromagnetic properties of Si–C–N based ceramics and composites , 2014 .

[25]  B. K. Gupta,et al.  Encapsulation of γ-Fe2O3 decorated reduced graphene oxide in polyaniline core–shell tubes as an exceptional tracker for electromagnetic environmental pollution , 2014 .

[26]  T. Qiu,et al.  Effect of ball milling and moderate surface oxidization on the microwave absorption properties of FeSiAl composites , 2013 .

[27]  Mao-Sheng Cao,et al.  Polymer-composite with high dielectric constant and enhanced absorption properties based on graphene–CuS nanocomposites and polyvinylidene fluoride , 2013 .

[28]  Hong Bi,et al.  Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites , 2013 .

[29]  Xinyu Xue,et al.  Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties , 2012 .

[30]  T. Xiao,et al.  Microwave magnetic properties of Co50/(SiO2)50 nanoparticles , 2002 .

[31]  S. Seal,et al.  Surface chemistry of Nextel-720, alumina and Nextel-720/alumina ceramic matrix composite (CMC) using XPS–A tool for nano-spectroscopy , 2002 .

[32]  X. Xiaolei,et al.  XTEM and XPS studies of plasma nitrocarburising layers on 0.45% C steel , 2000 .

[33]  Sung-Pill Hong,et al.  Surface hardening of steels by ion-nitriding with aluminum subsidiary cathode , 1999 .

[34]  M. Kakihana,et al.  Characterization of Si3N4/SiC nanocomposite by Raman scattering and XPS , 1999 .

[35]  G. Sawatzky,et al.  In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy , 1999 .

[36]  R. M. Lankreijer,et al.  Excess nitrogen in the ferrite matrix of nitrided binary iron-based alloys , 1989 .

[37]  Y. K. Rao Stoichiometry and Thermodynamics of Metallurgical Processes , 1985 .