The joy of Probabilistic Answer Set Programming: Semantics, complexity, expressivity, inference

Abstract Probabilistic Answer Set Programming (PASP) combines rules, facts, and independent probabilistic facts. We review several combinations of logic programming and probabilities, and argue that a very useful modeling paradigm is obtained by adopting a particular semantics for PASP, where one associates a credal set with each consistent program. We examine the basic properties of PASP under this credal semantics, in particular presenting novel results on its complexity and its expressivity, and we introduce an inference algorithm to compute (upper) probabilities given a program.

[1]  Luc De Raedt,et al.  Inference and learning in probabilistic logic programs using weighted Boolean formulas , 2013, Theory and Practice of Logic Programming.

[2]  Adnan Darwiche,et al.  On probabilistic inference by weighted model counting , 2008, Artif. Intell..

[3]  Alex Dekhtyar,et al.  The theory of interval probabilistic logic programs , 2009, Annals of Mathematics and Artificial Intelligence.

[4]  Fabrizio Riguzzi The Distribution Semantics is Well-Defined for All Normal Programs , 2015, PLP@ICLP.

[5]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[6]  Werner Kießling,et al.  New direction for uncertainty reasoning in deductive databases , 1991, SIGMOD '91.

[7]  Maurice Bruynooghe,et al.  Logic programs with annotated disjunctions , 2004, NMR.

[8]  Yoshitaka Kameya,et al.  Parameter Learning of Logic Programs for Symbolic-Statistical Modeling , 2001, J. Artif. Intell. Res..

[9]  Alessandro Facchini,et al.  A Credal Extension of Independent Choice Logic , 2018, SUM.

[10]  V. S. Subrahmanian,et al.  Theory of Generalized Annotated Logic Programming and its Applications , 1992, J. Log. Program..

[11]  Lise Getoor,et al.  Learning Probabilistic Relational Models , 1999, IJCAI.

[12]  Victor W. Marek,et al.  Stable models and an alternative logic programming paradigm , 1998, The Logic Programming Paradigm.

[13]  V. S. Subrahmanian,et al.  Probabilistic Logic Programming , 1992, Inf. Comput..

[14]  Neng-Fa Zhou,et al.  Generative Modeling with Failure in PRISM , 2005, IJCAI.

[15]  V. S. Subrahmanian Amalgamating knowledge bases , 1994, TODS.

[16]  M. H. van Emden,et al.  Quantitative Deduction and its Fixpoint Theory , 1986, J. Log. Program..

[17]  Thomas Lukasiewicz Probabilistic description logic programs , 2007, Int. J. Approx. Reason..

[18]  Thomas Lukasiewicz,et al.  Probabilistic logic programming with conditional constraints , 2001, TOCL.

[19]  Maurice Bruynooghe,et al.  Logical Bayesian Networks and Their Relation to Other Probabilistic Logical Models , 2005, BNAIC.

[20]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[21]  Walter R. Gilks,et al.  A Language and Program for Complex Bayesian Modelling , 1994 .

[22]  Edward H. Shortliffe,et al.  The Dempster-Shafer theory of evidence , 1990 .

[23]  Bruce G. Buchanan,et al.  The MYCIN Experiments of the Stanford Heuristic Programming Project , 1985 .

[24]  Peter J. F. Lucas,et al.  A new probabilistic constraint logic programming language based on a generalised distribution semantics , 2015, Artif. Intell..

[25]  James Cussens,et al.  CLP(BN): Constraint Logic Programming for Probabilistic Knowledge , 2002, Probabilistic Inductive Logic Programming.

[26]  Denis Deratani Mauá,et al.  Complexity results for probabilistic answer set programming , 2020, Int. J. Approx. Reason..

[27]  Ehud Y. Shapiro,et al.  Logic Programs With Uncertainties: A Tool for Implementing Rule-Based Systems , 1983, IJCAI.

[28]  Kathryn B. Laskey,et al.  Network Engineering for Complex Belief Networks , 1996, UAI.

[29]  Evgeny Dantsin,et al.  Probabilistic Logic Programs and their Semantics , 1990, RCLP.

[30]  Alexander A. Razborov,et al.  Why are there so many loop formulas? , 2006, TOCL.

[31]  Jacobo Torán,et al.  Complexity classes defined by counting quantifiers , 1991, JACM.

[32]  Toby Walsh,et al.  Handbook of satisfiability , 2009 .

[33]  Werner Kießling,et al.  Database Support for Problematic Knowledge , 1992, EDBT.

[34]  Thomas Lukasiewicz,et al.  Complexity Results for Probabilistic Datalog± , 2016, ECAI.

[35]  Wolfgang Faber,et al.  Declarative problem-solving using the DLV system , 2000 .

[36]  Robert P. Goldman,et al.  From knowledge bases to decision models , 1992, The Knowledge Engineering Review.

[37]  Jack Minker,et al.  Overview of disjunctive logic programming , 1994, Annals of Mathematics and Artificial Intelligence.

[38]  Fahiem Bacchus Using First-Order Probability Logic for the Construction of Bayesian Networks , 1993, UAI.

[39]  David Scott Warren,et al.  Probabilistic Logic Programming with Well-Founded Negation , 2012, 2012 IEEE 42nd International Symposium on Multiple-Valued Logic.

[40]  Werner Kießling,et al.  Increased robustness of Bayesian networks through probability intervals , 1997, Int. J. Approx. Reason..

[41]  I. Molchanov Theory of Random Sets , 2005 .

[42]  Fabrizio Riguzzi,et al.  A History of Probabilistic Inductive Logic Programming , 2014, Front. Robot. AI.

[43]  Michael Kifer,et al.  Belief Logic Programming: Uncertainty Reasoning with Correlation of Evidence , 2009, LPNMR.

[44]  Peter J. Stuckey,et al.  Stable Model Counting and Its Application in Probabilistic Logic Programming , 2014, AAAI.

[45]  Georg Gottlob,et al.  Complexity and expressive power of logic programming , 2001, CSUR.

[46]  Adnan Darwiche,et al.  Modeling and Reasoning with Bayesian Networks , 2009 .

[47]  Fabio Gagliardi Cozman Languages for Probabilistic Modeling Over Structured and Relational Domains , 2020, A Guided Tour of Artificial Intelligence Research.

[48]  David Poole,et al.  The Independent Choice Logic and Beyond , 2008, Probabilistic Inductive Logic Programming.

[49]  Joohyung Lee,et al.  A Probabilistic Extension of the Stable Model Semantics , 2015, AAAI Spring Symposia.

[50]  Michael Kifer,et al.  On the Semantics of Rule-Based Expert Systems with Uncertainty , 1988, ICDT.

[51]  Ben Taskar,et al.  Introduction to statistical relational learning , 2007 .

[52]  Kristian Kersting,et al.  Lifted Probabilistic Inference , 2012, ECAI.

[53]  Alessandra Mileo,et al.  A System for Probabilistic Inductive Answer Set Programming , 2015, SUM.

[54]  Denis Deratani Mauá,et al.  The finite model theory of Bayesian network specifications: Descriptive complexity and zero/one laws , 2019, Int. J. Approx. Reason..

[55]  Krysia Broda,et al.  Probabilistic Abductive Logic Programming using Dirichlet Priors , 2016, PLP@ICLP.

[56]  Nils J. Nilsson,et al.  Probabilistic Logic * , 2022 .

[57]  Luc De Raedt,et al.  Statistical Relational Artificial Intelligence: Logic, Probability, and Computation , 2016, Statistical Relational Artificial Intelligence.

[58]  Wolfgang Faber,et al.  Semantics and complexity of recursive aggregates in answer set programming , 2011, Artif. Intell..

[59]  Isaac Levi,et al.  The Enterprise Of Knowledge , 1980 .

[60]  K. Kersting,et al.  Interpreting Bayesian Logic Programs , 2000 .

[61]  Thomas A. Henzinger,et al.  Probabilistic programming , 2014, FOSE.

[62]  Manfred Jaeger,et al.  Complex Probabilistic Modeling with Recursive Relational Bayesian Networks , 2001, Annals of Mathematics and Artificial Intelligence.

[63]  David Poole,et al.  The Independent Choice Logic for Modelling Multiple Agents Under Uncertainty , 1997, Artif. Intell..

[64]  Matthias C. M. Troffaes,et al.  Introduction to imprecise probabilities , 2014 .

[65]  Denis Deratani Mauá,et al.  On the Semantics and Complexity of Probabilistic Logic Programs , 2017, J. Artif. Intell. Res..

[66]  Wolfgang Faber,et al.  Complexity results for answer set programming with bounded predicate arities and implications , 2007, Annals of Mathematics and Artificial Intelligence.

[67]  Luc De Raedt,et al.  Logical and relational learning , 2008, Cognitive Technologies.

[68]  David Poole,et al.  Probabilistic Horn Abduction and Bayesian Networks , 1993, Artif. Intell..

[69]  Matthias Nickles A Tool for Probabilistic Reasoning Based on Logic Programming and First-Order Theories Under Stable Model Semantics , 2016, JELIA.

[70]  Kenneth A. Ross,et al.  The well-founded semantics for general logic programs , 1991, JACM.

[71]  Ilkka Niemelä,et al.  The Answer Set Programming Paradigm , 2016, AI Mag..

[72]  Peter J. Stuckey,et al.  #∃SAT: Projected Model Counting , 2015, SAT.

[73]  Norbert Fuhr,et al.  Probabilistic Datalog—a logic for powerful retrieval methods , 1995, SIGIR '95.

[74]  Joohyung Lee,et al.  LPMLN, Weak Constraints, and P-log , 2017, AAAI.

[75]  Victor W. Marek,et al.  On the expressibility of stable logic programming , 2001, Theory and Practice of Logic Programming.

[76]  Fabrizio Riguzzi,et al.  A survey of lifted inference approaches for probabilistic logic programming under the distribution semantics , 2017, Int. J. Approx. Reason..

[77]  Stuart J. Russell,et al.  First-Order Probabilistic Languages: Into the Unknown , 2007, ILP.

[78]  Laks V. S. Lakshmanan,et al.  Probabilistic Deductive Databases , 1994, ILPS.

[79]  Daphne Koller,et al.  Probabilistic Relational Models , 1999, ILP.

[80]  Erich Grädel,et al.  Finite Model Theory and Descriptive Complexity , 2007 .

[81]  Tomi Janhunen,et al.  Representing Normal Programs with Clauses , 2004, ECAI.

[82]  David L. Poole,et al.  Representing Bayesian Networks Within Probabilistic Horn Abduction , 1991, UAI.

[83]  Yuliya Lierler,et al.  Disjunctive Answer Set Programming via Satisfiability , 2005, Answer Set Programming.

[84]  Sabine Glesner,et al.  Constructing Flexible Dynamic Belief Networks from First-Order Probalistic Knowledge Bases , 1995, ECSQARU.

[85]  J. Nelson Rushton,et al.  Probabilistic reasoning with answer sets , 2004, Theory and Practice of Logic Programming.

[86]  Denis Deratani Mauá,et al.  The Complexity of Bayesian Networks Specified by Propositional and Relational Languages , 2016, Artif. Intell..

[87]  Taisuke Sato,et al.  A Statistical Learning Method for Logic Programs with Distribution Semantics , 1995, ICLP.

[88]  Luc De Raedt,et al.  Probabilistic Inductive Logic Programming , 2004, Probabilistic Inductive Logic Programming.

[89]  Robert T. Clemen,et al.  Making Hard Decisions: An Introduction to Decision Analysis , 1997 .

[90]  Ben Taskar,et al.  Probabilistic Relational Models , 2014, Encyclopedia of Social Network Analysis and Mining.

[91]  Thomas Eiter,et al.  Answer Set Programming: A Primer , 2009, Reasoning Web.

[92]  David Heckerman,et al.  Probabilistic Entity-Relationship Models, PRMs, and Plate Models , 2004 .

[93]  Georg Gottlob,et al.  Disjunctive datalog , 1997, TODS.

[94]  Ilkka Niemelä,et al.  Logic programs with stable model semantics as a constraint programming paradigm , 1999, Annals of Mathematics and Artificial Intelligence.

[95]  Klaus W. Wagner,et al.  The complexity of combinatorial problems with succinct input representation , 1986, Acta Informatica.

[96]  V. S. Subrahmanian,et al.  Hybrid Probabilistic Programs , 2000, J. Log. Program..

[97]  Peter Haddawy,et al.  Answering Queries from Context-Sensitive Probabilistic Knowledge Bases (cid:3) , 1996 .