Selective growth of GaAs by HVPE: Keys for accurate control of the growth morphologies

Abstract GaAs selective growth experiments were carried out on (0 0 1) GaAs-patterned substrates by HVPE. Mesas grown on [1 1 0] and [1 1 0] oriented stripes exhibited various morphological profiles bounded by the low growth rate faces (0 0 1), (1 1 0), (1 1 1)A and (1 1 1)B, depending on the III/V ratio in the vapour phase, on the supersaturation and the growth temperature. The shape of the mesas results from the hierarchy of the growth rates of the low index faces. The latter growth rates were independently determined on un-masked substrates. Kinetic Wulff constructions were then built by referring to these growth rates. A good agreement was obtained between the morphologies of the selectively grown mesas and the constructions built from the only knowledge of the growth rate anisotropy, demonstrating that HVPE growth is mainly governed by surface kinetics. Qualitative growth mechanisms involving As and GaCl net adsorption fluxes as well as chlorine desorption kinetics are proposed for the various low index faces.

[1]  S. Lourdudoss,et al.  Temporally resolved selective regrowth of InP around [110] and [-110] mesas , 1996 .

[2]  S. Denbaars,et al.  Atomic force microscopy observation of threading dislocation density reduction in lateral epitaxial overgrowth of gallium nitride by MOCVD , 1998 .

[3]  N. El-Masry,et al.  Study of the epitaxial–lateral-overgrowth (ELO) process for GaN on sapphire , 1998 .

[4]  J. Sudijono,et al.  Surface evolution in GaAs(110) homoepitaxy; from microscopic to macroscopic morphology , 1998 .

[5]  Kazuhiro Tanaka,et al.  Selective growth of InP buried structure by chloride vapor phase epitaxy , 1986 .

[6]  J. Gentner,et al.  Experimental and theoretical study of low pressure GaAs VPE in the chloride system , 1982 .

[7]  Manijeh Razeghi,et al.  Lateral epitaxial overgrowth of GaN films on sapphire and silicon substrates , 1999 .

[8]  T. Nishinaga,et al.  Arsenic pressure dependence of incorporation diffusion length on (0 0 1) and (1 1 0) surfaces and inter-surface diffusion in MBE of GaAs , 1999 .

[9]  S. Lourdudoss,et al.  Orientation dependent growth behaviour during hydride VPE regrowth of InP:Fe around reactive ion etched mesas , 1991 .

[10]  S. Naritsuka,et al.  Interface supersaturation in microchannel epitaxy of InP , 1999 .

[11]  E. Kaldis Current Topics in Materials Science , 1980 .

[12]  S. Lourdudoss,et al.  In situ mesa etching and immediate regrowth in a HVPE reactor for buried heterostructure device fabrication , 2000 .

[13]  L. Hollan,et al.  Fast growth in GaAs VPE at low temperature and high partial pressures , 1979 .

[14]  M. Cadoret,et al.  Growth of GaInAs/InP by the vapor phase epitaxy hydride method , 1988 .

[15]  O. Parillaud,et al.  Low temperature planar regrowth of semi-insulating InP by low pressure hydride vapour phase epitaxy for device application , 1998 .

[16]  S. Lourdudoss,et al.  Temporally resolved regrowth of InP , 1995 .

[17]  Rajaram Bhat,et al.  Lateral and longitudinal patterning of semiconductor structures by crystal growth on nonplanar and dielectric-masked GaAs substrates: application to thickness-modulated waveguide structures , 1991 .

[18]  James B. Adams,et al.  Kinetic lattice Monte Carlo simulation of facet growth rate , 2000 .

[19]  T. Nishinaga,et al.  Optimization of growth condition for wide dislocation-free GaAs on Si substrate by microchannel epitaxy , 1998 .

[20]  D. Shaw Influence of Substrate Temperature on GaAs Epitaxial Deposition Rates , 1968 .

[21]  T. Kuech,et al.  Selective epitaxy in the conventional metalorganic vapor phase epitaxy of GaAs , 1989 .

[22]  H. Leblanc,et al.  Butt‐coupled InGaAs metal‐semiconductor‐metal waveguide photodetector formed by selective area regrowth , 1990 .

[23]  C. B. Carter,et al.  Single-crystal GaN pyramids grown on (1 1 1)Si substrates by selective lateral overgrowth , 1999 .

[24]  Takashi Fukui,et al.  GaAs tetrahedral quantum dot structures fabricated using selective area metalorganic chemical vapor deposition , 1991 .

[25]  D. Remiens,et al.  Application of AP MOVPE to a new butt-coupling scheme , 1991 .

[26]  K. Lau,et al.  Patterned substrate epitaxy surface shapes , 1991 .

[27]  K. Streubel,et al.  Morphological modifications during selective growth of InP around cylindrical and parallelepiped mesas , 1994 .

[28]  R. Logan,et al.  Regrowth of Semi‐Insulating InP around Etched Mesas Using Hydride Vapor Phase Epitaxy , 1990 .

[29]  D. Shaw Epitaxial GaAs Kinetic Studies: {001} Orientation , 1970 .

[30]  R. Azoulay,et al.  Selective growth of GaAs and GaAlAs by Cl-assisted OMVPE at atmospheric pressure , 1992 .

[31]  James S. Speck,et al.  Microstructure of GaN laterally overgrown by metalorganic chemical vapor deposition , 1998 .

[32]  R. Cadoret,et al.  Mécanismes de croissance des faces {001} exactes et désorientées de GaAs par la méthode aux chlorures sous H2 : diffusion superficielle, croissance par spirale, mécanismes de désorption HCl et GaCl3 , 1997 .

[33]  G. Rees Semi-Insulating III–V Materials , 1980 .

[34]  Lateral overgrowth and epitaxial lift-off of InP by halide vapor-phase epitaxy , 1998 .

[35]  Umesh K. Mishra,et al.  High-performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN , 1999 .

[36]  M. Ilegems,et al.  Localized Epitaxy of GaN by HVPE on patterned Substrates , 1998 .

[37]  Masahiko Sano,et al.  InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices , 1997 .

[38]  R. Göbel,et al.  Hydride — VPE embedding of InAlGaAs laser structures with SI InP:Fe , 1995 .

[39]  P. Roentgen,et al.  GaInAs/InP selective area metalorganic vapor phase epitaxy for one‐step‐grown buried low‐dimensional structures , 1990 .

[40]  R. Dupuis,et al.  Selective-area and lateral epitaxial overgrowth of III-N materials by metalorganic chemical vapor deposition , 1998 .

[41]  R. Cadoret,et al.  Influence of the Growth Parameters in GaAs Vapor Phase Epitaxy , 1977 .