New concepts for microwave sensing

For a long time, microwaves have been considered as a possible sensing agent for nondestructive testing/evaluation purposes. This trend has still been reinforced these last years with the advent of new microwave penetrable materials, such as composites. Inspection of materials via a mechanically scanned probe has proven to offer a convenient, but time consuming, way to measure local reflexion or transmission coefficients and, hence, to evaluate defects, faults, etc... High speed measurements are now possible by using arrays of fixed probes, resulting in attractive imaging equipments. Indeed, the availability of amplitude/phase data allows us to consider different processing techniques, the complexity of which can be selected according to the required performances in terms of contrast, spatial and time resolutions. This paper reviews some of the most promising approaches, such as non-linear inverse scattering techniques and neural networks. Prospective considerations are devoted to the future of such sophisticated microwave sensing techniques.