Valley-dimensionality locking of superconductivity in cubic phosphides

Two-dimensional superconductivity is primarily realized in atomically thin layers through extreme exfoliation, epitaxial growth, or interfacial gating. Apart from their technical challenges, these approaches lack sufficient control over the Fermiology of superconducting systems. Here, we offer a Fermiology-engineering approach, allowing us to desirably tune the coherence length of Cooper pairs and the dimensionality of superconducting states in arsenic phosphides AsxP1−x under hydrostatic pressure. We demonstrate how this turns these compounds into tunable two-dimensional superconductors with a dome-shaped phase diagram even in the bulk limit. This peculiar behavior is shown to result from an unconventional valley-dimensionality locking mechanism, driven by a delicate competition between three-dimensional hole-type and two-dimensional electron-type energy pockets spatially separated in momentum space. The resulting dimensionality crossover is further discussed to be systematically controllable by pressure and stoichiometry tuning. Our findings pave a unique way to realize and control superconducting phases with special pairing and dimensional orders.

[1]  Jun Yu Li,et al.  Charge-density-wave-driven electronic nematicity in a kagome superconductor , 2022, Nature.

[2]  N. Butch,et al.  Multicomponent superconducting order parameter in UTe2 , 2021, Science.

[3]  X. H. Chen,et al.  Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal , 2021, Nature Communications.

[4]  J. Zuo,et al.  Two-dimensional superconductivity and anisotropic transport at KTaO3 (111) interfaces , 2021, Science.

[5]  L. Kourkoutis,et al.  Isotropic Pauli-limited superconductivity in the infinite-layer nickelate Nd0.775Sr0.225NiO2 , 2020, 2012.06560.

[6]  Jirong Sun,et al.  Two-Dimensional Superconductivity at the LaAlO_{3}/KTaO_{3}(110) Heterointerface. , 2020, Physical review letters.

[7]  Kenji Watanabe,et al.  Rashba valleys and quantum Hall states in few-layer black arsenic , 2020, Nature.

[8]  Jirong Sun,et al.  Electric field control of superconductivity at the LaAlO3/KTaO3(111) interface , 2020, Science.

[9]  P. Puech,et al.  Reversible Pressure-induced Partial Phase Transition in Few-Layer Black Phosphorus. , 2020, Nano letters.

[10]  Chong Wang,et al.  Type-II Ising superconductivity and anomalous metallic state in macro-size ambient-stable ultrathin crystalline films. , 2020, Nano letters.

[11]  Mudassar Nazir,et al.  Investigation of dimensionality in superconducting NbN thin film samples with different thicknesses and NbTiN meander nanowire samples by measuring the upper critical field , 2020, Chinese Physics B.

[12]  M. Sigrist,et al.  Chiral superconductivity in heavy-fermion metal UTe2 , 2020, Nature.

[13]  Yuanbo Zhang,et al.  High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ , 2019, Nature.

[14]  Wenge Yang,et al.  Pressure-induced superconductivity and topological phase transitions in the topological nodal-line semimetal SrAs3 , 2019, npj Quantum Materials.

[15]  Jiannong Wang,et al.  Studies on the origin of the interfacial superconductivity of Sb2Te3/Fe1+yTe heterostructures , 2019, Proceedings of the National Academy of Sciences.

[16]  I. Liu,et al.  Nearly ferromagnetic spin-triplet superconductivity , 2018, Science.

[17]  M. Sigrist,et al.  Microscopic evidence for a chiral superconducting order parameter in the heavy fermion superconductor , 2019 .

[18]  T. Xiang,et al.  Crossover from two-dimensional to three-dimensional superconducting states in bismuth-based cuprate superconductor , 2019, Nature Physics.

[19]  W. Chu,et al.  Freestanding Cubic ZrN Single-crystalline Films with Two-dimensional Superconductivity. , 2019, Journal of the American Chemical Society.

[20]  E. Kaxiras,et al.  Clean 2D superconductivity in a bulk van der Waals superlattice , 2019, Science.

[21]  Chong Wang,et al.  Type-II Ising pairing in few-layer stanene , 2019, Science.

[22]  S. Du,et al.  Half-integer level shift of vortex bound states in an iron-based superconductor , 2019, Nature Physics.

[23]  I. Liu,et al.  Spontaneously polarized half-gapped superconductivity , 2018, 1811.11808.

[24]  T. Xiang,et al.  Pressure-induced phase transitions and superconductivity in a black phosphorus single crystal , 2018, Proceedings of the National Academy of Sciences.

[25]  Kenji Watanabe,et al.  Electrically tunable low-density superconductivity in a monolayer topological insulator , 2018, Science.

[26]  Yong Xu,et al.  Two-dimensional superconductivity and topological states in PdTe2 thin films , 2018, Physical Review Materials.

[27]  M. Thalakulam,et al.  2D superconductivity and vortex dynamics in 1T-MoS2 , 2018, Communications Physics.

[28]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[29]  K. T. Law,et al.  Transport evidence of asymmetric spin–orbit coupling in few-layer superconducting 1Td-MoTe2 , 2018, Nature Communications.

[30]  T. Xiang,et al.  Electron-hole balance and the anomalous pressure-dependent superconductivity in black phosphorus , 2017 .

[31]  Yong Xu,et al.  Superconductivity in few-layer stanene , 2017, 1712.03695.

[32]  Xiaodong Xu,et al.  Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides , 2017, Nature Communications.

[33]  S. Rezvani,et al.  Dimensional crossover and incipient quantum size effects in superconducting niobium nanofilms , 2017, Scientific Reports.

[34]  A. Bollinger,et al.  Spontaneous breaking of rotational symmetry in copper oxide superconductors , 2017, Nature.

[35]  Guanyu Chen,et al.  BCS-like critical fluctuations with limited overlap of Cooper pairs in FeSe , 2017, 1704.08850.

[36]  C. Felser,et al.  Pressure-induced superconductivity and topological quantum phase transitions in a quasi-one-dimensional topological insulator: Bi4I4 , 2017, npj Quantum Materials.

[37]  A. Bollinger,et al.  Dependence of the critical temperature in overdoped copper oxides on superfluid density , 2016, Nature.

[38]  R. Prozorov,et al.  Interband coupling and nonmagnetic interband scattering in ± s superconductors , 2016, 1604.00244.

[39]  F. Guinea,et al.  Enhanced superconductivity in atomically thin TaS2 , 2016, Nature Communications.

[40]  A. Neto,et al.  Controlling many-body states by the electric-field effect in a two-dimensional material , 2015, Nature.

[41]  E. Rodriguez,et al.  Strong anisotropy in nearly ideal tetrahedral superconducting FeS single crystals , 2015, 1512.01245.

[42]  L. Schultz,et al.  High field superconducting properties of Ba(Fe1−xCox)2As2 thin films , 2015, Scientific Reports.

[43]  Fa Wang,et al.  Quantum Griffiths singularity of superconductor-metal transition in Ga thin films , 2015, Science.

[44]  A. Tsukazaki,et al.  Electric-field-induced superconductivity in electrochemically etched ultrathin FeSe films on SrTiO3 and MgO , 2015, Nature Physics.

[45]  K. T. Law,et al.  Ising pairing in superconducting NbSe2 atomic layers , 2015, Nature Physics.

[46]  Yasuharu Nakamura,et al.  Superconductivity protected by spin–valley locking in ion-gated MoS2 , 2015, Nature Physics.

[47]  Wei Zhang,et al.  Plain s-wave superconductivity in single-layer FeSe on SrTiO3 probed by scanning tunnelling microscopy , 2015, Nature Physics.

[48]  Y. Iwasa,et al.  Metallic ground state in an ion-gated two-dimensional superconductor , 2015, Science.

[49]  M. Varela,et al.  Engineering two-dimensional superconductivity and Rashba spin–orbit coupling in LaAlO3/SrTiO3 quantum wells by selective orbital occupancy , 2015, Nature Communications.

[50]  Jian-lin Luo,et al.  Superconductivity in the vicinity of antiferromagnetic order in CrAs , 2014, Nature Communications.

[51]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics , 2014, Nature Communications.

[52]  Adel Nader,et al.  Critical field of 2H-NbSe2 down to 50mK , 2014, SpringerPlus.

[53]  K. T. Law,et al.  Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure , 2013, Nature Communications.

[54]  S. Hasegawa,et al.  Magnetoresistance measurements of a superconducting surface state of in-induced and Pb-induced structures on Si(111). , 2013, Physical review letters.

[55]  H. Shishido,et al.  Anomalous upper critical field in CeCoIn5/YbCoIn5 superlattices with a Rashba-type heavy Fermion interface. , 2012, Physical review letters.

[56]  J. Nelson,et al.  Suppression of the Berezinskii-Kosterlitz-Thouless transition in 2D superconductors by macroscopic quantum tunneling. , 2012, Physical review letters.

[57]  K. Hashimoto,et al.  Nematic and meta-nematic transitions in the iron pnictides , 2012, 1207.1045.

[58]  K. Hashimoto,et al.  Electronic nematicity above the structural and superconducting transition in BaFe2(As1−xPx)2 , 2012, Nature.

[59]  H. Kontani,et al.  Extremely strong-coupling superconductivity in artificial two-dimensional Kondo lattices , 2011, 1109.2382.

[60]  C. M. Folkman,et al.  Coexistence of superconductivity and ferromagnetism in two dimensions. , 2011, Physical review letters.

[61]  P. Canfield,et al.  Anisotropic H c2 of K 0.8 Fe 1.76 Se 2 determined up to 60 T , 2011, 1103.0507.

[62]  F. Balakirev,et al.  Upper critical field and its anisotropy in LiFeAs , 2011, 1101.3159.

[63]  Xi Chen,et al.  Superconductivity in one-atomic-layer metal films grown on Si(111) , 2010 .

[64]  J. Warren,et al.  Pauli-limited Upper Critical Field of Fe1+yTe1−xSex , 2010, 1001.1751.

[65]  M. Sachs,et al.  Tuning spin-orbit coupling and superconductivity at the SrTiO{3}/LaAlO{3} interface: a magnetotransport study. , 2010, Physical review letters.

[66]  S. Hashimoto,et al.  Upper critical fields and critical current density of BaFe2(As0.68P0.32)2 single crystal , 2009, 0908.3284.

[67]  Chih-Kang Shih,et al.  Superconductivity at the Two-Dimensional Limit , 2009, Science.

[68]  Kamran Behnia,et al.  Nernst effect in the phase-fluctuating superconductor InOx , 2007, 0712.2655.

[69]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[70]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[71]  W. Nellis,et al.  The ruby pressure standard to 150 GPa , 2005 .

[72]  Yang Guo,et al.  Superconductivity Modulated by Quantum Size Effects , 2004, Science.

[73]  Katsuya Shimizu,et al.  Superconductivity in compressed lithium at 20 K , 2002, Nature.

[74]  Tatsuo C. Kobayashi,et al.  Pressure-induced superconductivity in a ferromagnet UGe2 , 2001 .

[75]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[76]  Y. Maeno,et al.  Extremely Strong Dependence of Superconductivity on Disorder in Sr2RuO4 , 1998 .

[77]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[78]  A. Yazdani,et al.  Superconducting-insulating transition in two-dimensional a-MoGe thin films. , 1995, Physical review letters.

[79]  V. J. Emery,et al.  Importance of phase fluctuations in superconductors with small superfluid density , 1995, Nature.

[80]  T. Yagi,et al.  Pressure-induced phase transitions of phosphorus-arsenic alloys , 1993 .

[81]  Hsu,et al.  Superconducting transition, fluctuation, and vortex motion in a two-dimensional single-crystal Nb film. , 1992, Physical review. B, Condensed matter.

[82]  I. Schuller,et al.  Dimensional crossover in superlattice superconductors , 1984 .

[83]  David R. Nelson,et al.  Resistive transition in superconducting films , 1979 .

[84]  T. G. Worlton,et al.  Effect of pressure on bonding in black phosphorus , 1979 .

[85]  J. E. Mooij,et al.  Possibility of Vortex-Antivortex Pair Dissociation in Two-Dimensional Superconductors , 1979 .

[86]  F. Birch,et al.  Finite strain isotherm and velocities for single‐crystal and polycrystalline NaCl at high pressures and 300°K , 1978 .

[87]  S. Foner,et al.  High‐field measurements of anisotropy of Hc2 and effect on grain‐boundary flux pinning in V3Si , 1978 .

[88]  E. Helfand,et al.  Temperature and Purity Dependence of the Superconducting Critical Field, H c 2 . III. Electron Spin and Spin-Orbit Effects , 1966 .

[89]  S. Rundqvist,et al.  Refinement of the crystal structure of black phosphorus , 1965 .

[90]  J. Pearl,et al.  CURRENT DISTRIBUTION IN SUPERCONDUCTING FILMS CARRYING QUANTIZED FLUXOIDS , 1964 .

[91]  J. C. Jamieson Crystal Structures Adopted by Black Phosphorus at High Pressures , 1963, Science.

[92]  K. Cheng Theory of Superconductivity , 1948, Nature.

[93]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[94]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Jing Chen,et al.  Scalable Clean Exfoliation of High‐Quality Few‐Layer Black Phosphorus for a Flexible Lithium Ion Battery , 2016, Advanced materials.

[96]  L. Benfatto,et al.  Effective two-dimensional thickness for the Berezinskii-Kosterlitz-Thouless-like transition in a highly underdoped La2−xSrxCuO4 , 2016 .

[97]  A. Hirata,et al.  Direct Observation of High-Temperature Superconductivity in One-Unit-Cell FeSe Films , 2014 .

[98]  K. T. Law,et al.  Title : Two-dimensional superconductivity at the interface of a Bi 2 Te 3 / FeTe heterostructure , 2013 .

[99]  H. Alloul Introduction to Superconductivity , 2011 .

[100]  A. W. E. E. K. L. Y. J. O U R N A L D E V O T E D T O T H E A D V A N C E,et al.  S C I E N C E , 2022 .