Application of an homogeneous model to simulate the heating of two-phase flows

This paper is dedicated to the simulation of two-phase flows on the basis of an homogeneous model that allows to account for the disequilibrium of the pressure, temperature and chemical potential (mass transfer). The numerical simulations are performed using a fractional step method treat-ing separately the convective part of the model and the source terms. On the basis of analytical solutions for the convective part of the model, nu-merical investigations are performed to compare different finite volume schemes. Eventually, a test case of the heating of a mixture of steam and water is presented.

[1]  Thomas Pasutto,et al.  Condensation models and boundary conditions for non-equilibrium wet steam flows , 2013 .

[2]  Thierry Gallouët,et al.  Un schéma de Godunov approché , 1996 .

[3]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[4]  E. L. Hill The Velocity of Sound in a Gas , 1933 .

[5]  Hélène Mathis Etude théorique et numérique des écoulements avec transition de phase , 2010 .

[6]  Hervé Guillard,et al.  A five equation reduced model for compressible two phase flow problems , 2005 .

[7]  B. Perthame,et al.  Relaxation of Energy and Approximate Riemann Solvers for General Pressure Laws in Fluid Dynamics , 1998 .

[8]  R. Saurel,et al.  Rankine–Hugoniot relations for shocks in heterogeneous mixtures , 2007, Journal of Fluid Mechanics.

[9]  Thierry Gallouët,et al.  On an Approximate Godunov Scheme , 1999 .

[10]  Jean-Marc Hérard,et al.  Some recent finite volume schemes to compute Euler equations using real gas EOS , 2002 .

[11]  Rémi Abgrall,et al.  Modelling phase transition in metastable liquids: application to cavitating and flashing flows , 2008, Journal of Fluid Mechanics.

[12]  Jonathan Jung Schémas numériques adaptés aux accélérateurs multicoeurs pour les écoulements bifluides , 2013 .

[13]  Florian Caro,et al.  Modélisation et simulation numérique des transitions de phase liquide-vapeur , 2004 .

[14]  M. Balikhin,et al.  Rankine–Hugoniot relations for shocks with demagnetized ions , 2008, Journal of Plasma Physics.

[15]  Léon Bolle,et al.  The non-equilibrium relaxation model for one-dimensional flashing liquid flow , 1996 .

[16]  D. Stewart,et al.  Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations , 2001 .

[17]  Thierry BuÄard A sequel to a rough Godunov scheme: application to real gases , 2000 .

[18]  Philippe Helluy,et al.  Relaxation models of phase transition flows , 2006 .

[19]  Jean-Marc Hérard,et al.  A simple parameter-free entropy correction for approximate Riemann solvers , 2010 .

[20]  Grégoire Allaire,et al.  MODELLING AND SIMULATION OF LIQUID-VAPOR PHASE TRANSITION IN COMPRESSIBLE FLOWS BASED ON THERMODYNAMICAL EQUILIBRIUM ∗ , 2012 .

[21]  Grégoire Allaire,et al.  A strictly hyperbolic equilibrium phase transition model , 2007 .

[22]  Philippe Helluy,et al.  Pressure laws and fast Legendre transform , 2011 .

[23]  Philippe Helluy,et al.  Finite volume simulation of cavitating flows , 2005 .

[24]  Michel Barret,et al.  Computation of Flashing Flows In Variable Cross-Section Ducts , 2000 .

[25]  Yujie Liu,et al.  Contribution à la vérification et à la validation d'un modèle diphasique bifluide instationnaire , 2013 .