Citlalmitl: A Laser-based Device for Meteoritical Sample Fabrication with Arbitrary Thermal Histories

We present Citlalmitl (the word for meteorite in the Nahuatl language), a new experimental device designed and built to simulate high-temperature processes relevant for meteoritics, including chondrule formation and the atmospheric entry of micrometeorites (MMs). The main component of Citlalmitl is a 50 W CO2 laser, used to melt samples that simulate the precursors of meteoritical materials. As examples of the operation of our device, we have irradiated silicate samples controlling the laser duty cycle to reproduce heating profiles predicted by shock-wave simulations. Citlalmitl records the sample temperature during and after irradiation, a unique feature that allows us to directly measure the thermal history of the sample, a key parameter for the characteristics observed in MMs and chondrules. We demonstrate that Citlalmitl can reproduce different heating profiles useful to mimic thermal histories in meteoritical processes.

[1]  K. Miljković,et al.  Regenerative water sources on surfaces of airless bodies , 2020, Nature Astronomy.

[2]  Aaron P. Wilson,et al.  Atmospheric entry heating of micrometeorites at Earth and Mars: Implications for the survival of organics , 2019, Meteoritics & Planetary Science.

[3]  E. Dartois,et al.  Characterization of the organic matter and hydration state of Antarctic micrometeorites: A reservoir distinct from carbonaceous chondrites , 2018 .

[4]  P. Rochette,et al.  The parent body controls on cosmic spherule texture: Evidence from the oxygen isotopic compositions of large micrometeorites , 2017 .

[5]  M. Genge The entry heating and abundances of basaltic micrometeorites , 2017 .

[6]  M. Genge,et al.  An urban collection of modern-day large micrometeorites: Evidence for variations in the extraterrestrial dust flux through the Quaternary , 2017 .

[7]  G. Libourel,et al.  Olivine dissolution in molten silicates: An experimental study with application to chondrule formation , 2017 .

[8]  P. Lucey,et al.  Simulated space weathering of Fe- and Mg-rich aqueously altered minerals using pulsed laser irradiation , 2016, 1612.09396.

[9]  S. Dey,et al.  ABLATION AND CHEMICAL ALTERATION OF COSMIC DUST PARTICLES DURING ENTRY INTO THE EARTH’S ATMOSPHERE , 2016 .

[10]  S. Dey,et al.  RELICT OLIVINES IN MICROMETEORITES: PRECURSORS AND INTERACTIONS IN THE EARTH’S ATMOSPHERE , 2016 .

[11]  H. C. Connolly,et al.  Chondrules: The canonical and noncanonical views , 2016 .

[12]  H. Leroux,et al.  The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites , 2015, Proceedings of the International Astronomical Union.

[13]  V. Shestivska,et al.  High-energy chemistry of formamide: A unified mechanism of nucleobase formation , 2014, Proceedings of the National Academy of Sciences.

[14]  T. Henning,et al.  The 69 μm forsterite band in spectra of protoplanetary disks. Results from the Herschel DIGIT programme , 2013, 1303.3744.

[15]  G. Pupillo,et al.  Simulations of micrometeoroid interactions with the Earth atmosphere , 2013, 1302.3666.

[16]  N. Imae,et al.  Micrometeorite precursors: Clues from the mineralogy and petrology of their relict minerals , 2013 .

[17]  S. Taylor,et al.  Fine‐grained precursors dominate the micrometeorite flux , 2012 .

[18]  J. Augereau,et al.  ON THE EVOLUTION OF DUST MINERALOGY, FROM PROTOPLANETARY DISKS TO PLANETARY SYSTEMS , 2011, 1104.3574.

[19]  Edward R. D. Scott,et al.  Chondrules and the Protoplanetary Disk , 2011 .

[20]  G. Kurat,et al.  Basaltic micrometeorites from the Novaya Zemlya glacier , 2010 .

[21]  A. Boss,et al.  The importance of experiments: Constraints on chondrule formation models , 2010 .

[22]  R. Jones Petrographic constraints on the diversity of chondrule reservoirs in the protoplanetary disk , 2010 .

[23]  Alan E. Rubin,et al.  Meteorite and meteoroid: New comprehensive definitions , 2010 .

[24]  C. Güttler,et al.  Thermal metamorphoses of cosmic dust aggregates: Experiments by furnace, electrical gas discharge, and radiative heating , 2010 .

[25]  J. Solé Determination of K-Ar ages in milligram samples using an infrared laser for argon extraction. , 2009, Rapid communications in mass spectrometry : RCM.

[26]  Harold F. Levison,et al.  COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS , 2009, 0909.4322.

[27]  M. Zolensky,et al.  A unique basaltic micrometeorite expands the inventory of solar system planetary crusts , 2009, Proceedings of the National Academy of Sciences.

[28]  A. Tsuchiyama,et al.  Chondrulelike Objects in Short-Period Comet 81P/Wild 2 , 2008, Science.

[29]  F. Ciesla,et al.  The Formation Conditions of Chondrules and Chondrites , 2008, Science.

[30]  S. Taylor,et al.  The classification of micrometeorites , 2008 .

[31]  Mikhail Ostruooumov Espectrometría infrarroja de reflexión en mineralogía avanzada, gemología y arqueometría , 2007 .

[32]  H. Satoh,et al.  Reproduction of chondrules from levitated, hypercooled melts , 2006 .

[33]  P. Coll,et al.  Organic chemistry induced by corona discharges in Titan’s troposphere: Laboratory simulations , 2005 .

[34]  G. Fox,et al.  Chondrule textures and precursor grain size: an experimental study , 2004 .

[35]  A. Raga,et al.  Experimental simulation of lightning, interacting explosions and astrophysical jets with pulsed lasers , 2003 .

[36]  S. Desch,et al.  A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules , 2002 .

[37]  G. Libourel,et al.  Experimental simulation of atmospheric entry of micrometeorites , 2001 .

[38]  C. McKay,et al.  Production of nitrogen oxides by lightning and coronae discharges in simulated early Earth, Venus and Mars environments. , 2001, Advances in space research : the official journal of the Committee on Space Research.

[39]  J. Bowey,et al.  The 10-μm profile of molecular-cloud and diffuse ISM silicate dust , 1998 .

[40]  S. Bajt,et al.  Heating experiments simulating atmospheric entry heating of micrometeorites: Clues to their parent body sources , 1998 .

[41]  M. Grady,et al.  The textures and compositions of fine-grained Antarctic micrometeorites: Implications for comparisons with meteorites , 1997 .

[42]  J. Wood Processing of chondritic and planetary material in spiral density waves in the nebula , 1996 .

[43]  R. Jones Petrology of FeO-poor, porphyritic pyroxene chondrules in the Semarkona chondrite , 1994 .

[44]  P. Buseck,et al.  Electromagnetic Heating in the Early Solar Nebula and the Formation of Chondrules , 1994, Science.

[45]  M. Horányi,et al.  Gas dynamic heating of chondrule precursor grains in the solar nebula , 1991 .

[46]  R. Hewins,et al.  Formation conditions of pyroxene-olivine and magnesian olivine chondrules , 1990 .

[47]  G. Lofgren,et al.  Dynamic crystallization study of barred olivine chondrules , 1990 .

[48]  C P McKay,et al.  Production of organic compounds in plasmas: a comparison among electric sparks, laser-induced plasmas, and UV light. , 1989, Icarus.

[49]  C. McKay,et al.  Lightning production of hydrocarbons and HCN on Titan: laboratory measurements. , 1988, Icarus.

[50]  C. McKay,et al.  Spectra of simulated lightning on Venus, Jupiter, and Titan. , 1985, Icarus.

[51]  G. J. Taylor,et al.  Chondrules and other components in C, O, and E chondrites: Similarities in their properties and origins , 1983 .

[52]  Paul C. Nordine,et al.  Aerodynamic levitation of laser-heated solids in gas jets , 1982 .

[53]  D. York,et al.  40Ar/39Ar dating of terrestrial minerals with a continuous laser , 1981 .

[54]  K. Keil,et al.  RELATIVE ABUNDANCES OF CHONDRULE PRIMARY TEXTURAL TYPES IN ORDINARY CHONDRITES AND THEIR BEARING ON CONDITIONS OF CHONDRULE FORMATION , 1981 .

[55]  A. Tsuchiyama,et al.  Experimental reproduction of textures of chondrules , 1980 .

[56]  H. McSween Chemical and petrographic constraints on the origin of chondrules and inclusions in carbonaceous chondrites , 1977 .

[57]  K. Keil,et al.  The origin of chondrules - Experimental investigation of metastable liquids in the system Mg2SiO4-SiO2 , 1976 .

[58]  V. Farmer The Infrared Spectra of Minerals and Related Inorganic Compounds , 1976 .

[59]  K. Keil,et al.  Use of a CO2 laser to prepare chondrule-like spherules from supercooled molten oxide and silicate droplets , 1972 .