Influence of long-term ageing on the microstructure and mechanical properties of T24 steel

[1]  A. Zieliński,et al.  Forecasting in the presence of microstructural changes for the case of P91 steel after long-term ageing , 2016 .

[2]  A. Zieliński,et al.  Forecasting the Particle Diameter Size Distribution in P92 (X10CrWMoVNb9-2) Steel After Long-Term Ageing at 600 and 650°C , 2016 .

[3]  G. Golański,et al.  Estimation of long-term creep strength in austenitic power plant steels , 2016 .

[4]  M. Sroka,et al.  The effect of temperature on the changes of precipitates in low-alloy steel , 2016 .

[5]  T. Tański,et al.  Influence of long-term service on microstructure, mechanical properties, and service life of HCM12A steel , 2015 .

[6]  Y. Jiang,et al.  Microstructures and high-temperature mechanical properties in 9Cr–0.5Mo–1.8W–VNb steel after aging at 650°C , 2015 .

[7]  G. Golański,et al.  Microstructural evolution of aged heat-resistant cast steel following strain controlled fatigue , 2015 .

[8]  G. Golański,et al.  Degradation of microstructure and mechanical properties in martensitic cast steel after ageing , 2015 .

[9]  Mohammad Javad Faizabadi,et al.  Predictions of toughness and hardness by using chemical composition and tensile properties in microalloyed line pipe steels , 2014, Neural Computing and Applications.

[10]  A. Kokabi,et al.  Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints , 2014 .

[11]  Lance Lewis Snead,et al.  Stability of MX-type strengthening nanoprecipitates in ferritic steels under thermal aging, stress and ion irradiation , 2014 .

[12]  A. Kokabi,et al.  Designing of CK45 carbon steel and AISI 304 stainless steel dissimilar welds , 2013 .

[13]  Wei Yan,et al.  Microstructural stability of 9–12%Cr ferrite/martensite heat-resistant steels , 2013, Frontiers of Materials Science.

[14]  A. Kokabi,et al.  Finite Element Simulation of Carbide Precipitation in Austenitic Stainless Steel 304 , 2012 .

[15]  J. Brózda,et al.  Modern martensitic steels for power industry , 2012 .

[16]  G. Golański Influence of Ageing Process on Structure and Mechanical Properties of the T24 Steel , 2010 .

[17]  I. A. Shchenkova,et al.  New martensitic steels for fossil power plant: Creep resistance , 2010 .

[18]  Kouichi Maruyama,et al.  Static recovery of tempered lath martensite microstructures during long-term aging in 9–12% Cr heat resistant steels , 2009 .

[19]  W. Xiaojun,et al.  Evolution Behavior of Carbides in 2.25Cr-1Mo-0.25V Steel , 2009 .

[20]  G. Eggeler,et al.  Microstructural evolution in T24, a modified 2(1/4)Cr–1Mo steel during creep after different heat treatments , 2009 .

[21]  M. Sauzay,et al.  Mechanical and microstructural stability of P92 steel under uniaxial tension at high temperature , 2009 .

[22]  S. Saroja,et al.  Microstructural stability of modified 9Cr–1Mo steel during long term exposures at elevated temperatures , 2008 .

[23]  M. Svoboda,et al.  Thermal-induced evolution of secondary phases in Cr–Mo–V low alloy steels , 2006 .

[24]  Takashi Inoue,et al.  Creep rupture strength of V-modified 2 1/4Cr–1Mo steel , 2004 .

[25]  Qiang Li Modeling the microstructure–mechanical property relationship for a 12Cr–2W–V–Mo–Ni power plant steel , 2003 .

[26]  M. Svoboda,et al.  Precipitation related anomalies in kinetics of phosphorus grain boundary segregation in low alloy steels , 2003 .

[27]  J. Janovec,et al.  Phosphorus segregation in CrMoV low-alloy steels , 2000 .

[28]  P. Flewitt,et al.  Quenching and tempering-induced molybdenum segregation to grain boundaries in a 2.25Cr–1Mo steel , 2000 .

[29]  M. Svoboda,et al.  Carbide reactions and phase equilibria in low-alloy Cr-Mo-V steels tempered at 773-993 K. Part II : Theoretical calculations , 1998 .

[30]  J. Dobrzański,et al.  Cerrelation between phase composition and life-time of 1Cr0.5Mo steels during long-term service at elevated temperatures , 1995 .

[31]  T. Mukherjee,et al.  Influence of long- term aging and superimposed creep , 1992, Metallurgical and Materials Transactions A.

[32]  D. S. Sarma,et al.  Effect of long-term service exposure on microstructure and mechanical properties of a crmov steam turbine rotor steel , 1991 .

[33]  B. Senior A critical review of precipitation behaviour in 1CrMoV rotor steels , 1988 .

[34]  W. Zieliński,et al.  Mo2C → M6C carbide transformation in low alloy Cr-Mo ferritic steels , 1984 .

[35]  C. Mcmahon,et al.  The micro-mechanisms of tempered martensite embrittlement in 4340-type steels , 1983 .

[36]  K. Kuo,et al.  Embrittlement of 21/4 CrMoV steel bolts after long exposure at 540 °C , 1981 .

[37]  K. R. Williams,et al.  Microstructural instability of 0.5Cr0.5Mo0.25V creep-resistant steel during service at elevated temperatures , 1981 .

[38]  R. Ritchie,et al.  Mechanisms of tempered martensite embrittlement in low alloy steels , 1978 .

[39]  C. Mcmahon,et al.  The influence of Mo on P-lnduced temper embrittlement in Ni-Cr steel , 1977 .

[40]  C. Bauer,et al.  Kinetics of grain boundary migration in copper bicrystals with [001] rotation axes☆ , 1973 .

[41]  R. Ham The determination of dislocation densities in thin films , 1961 .

[42]  S. Karlsson,et al.  Reducing high-temperature corrosion on high-alloyed stainless steel superheaters by co-combustion of municipal sewage sludge in a fluidised bed boiler , 2015 .

[43]  J. Dobrzański Reason analysis of welded joints cracking in membrane wall elements as a basis for manufacturing technology selection of the evaporator collector with new generation low-alloy bainitic steel for boilers with supercritical working parameters , 2013 .

[44]  Gholamreza Khalaj,et al.  MODELING THE CORRELATION BETWEEN HEAT TREATMENT, CHEMICAL COMPOSITION AND BAINITE FRACTION OF PIPELINE STEELS BY MEANS OF ARTIFICIAL NEURAL NETWORKS , 2013 .

[45]  Ali Nazari,et al.  PREDICTION OF MARTENSITE FRACTION OF MICROALLOYED STEEL BY ARTIFICIAL NEURAL NETWORKS , 2013 .

[46]  B. Vandenberghe,et al.  T/P23, 24, 911 and 92: New grades for advanced coal-fired power plants—Properties and experience☆ , 2008 .

[47]  Walter Bendick,et al.  New low alloy heat resistant ferritic steels T/P23 and T/P24 for power plant application , 2007 .

[48]  M. Svoboda,et al.  Microstructural aspects of phosphorus grain boundary segregation in low alloy steels , 2001 .

[49]  Jin Yu,et al.  The effects of composition and carbide precipitation on temper embrittlement of 2.25 Cr-1 Mo steel: Part I. Effects of P and Sn , 1980 .