Current status of AlInN layers lattice-matched to GaN for photonics and electronics

We report on the current properties of Al1-x InxN (x approximate to 0.18) layers lattice- matched ( LM) to GaN and their specific use to realize nearly strain- free structures for photonic and electronic applications. Following a literature survey of the general properties of AlInN layers, structural and optical properties of thin state- of- the- art AlInN layers LM to GaN are described showing that despite improved structural properties these layers are still characterized by a typical background donor concentration of ( 1 - 5) x 10(18) cm(-3) and a large Stokes shift (similar to 800 meV) between luminescence and absorption edge. The use of these AlInN layers LM to GaN is then exemplified through the properties of GaN/ AlInN multiple quantum wells ( QWs) suitable for near- infrared intersubband applications. A built- in electric field of 3.64MVcm(-1) solely due to spontaneous polarization is deduced from photoluminescence measurements carried out on strain- free single QW heterostructures, a value in good agreement with that deduced from theoretical calculation. Other potentialities regarding optoelectronics are demonstrated through the successful realization of crack- free highly reflective AlInN/ GaN distributed Bragg reflectors ( R > 99%) and high quality factor microcavities ( Q > 2800) likely to be of high interest for short wavelength vertical light emitting devices and fundamental studies on the strong coupling regime between excitons and cavity photons. In this respect, room temperature ( RT) lasing of a LM AlInN/ GaN vertical cavity surface emitting laser under optical pumping is reported. A description of the selective lateral oxidation of AlInN layers for current confinement in nitride- based light emitting devices and the selective chemical etching of oxidized AlInN layers is also given. Finally, the characterization of LM AlInN/ GaN heterojunctions will reveal the potential of such a system for the fabrication of high electron mobility transistors through the report of a high two- dimensional electron gas sheet carrier density ( n(s) similar to 2.6 x 10(13) cm(-2)) combined with a RT mobility mu(e) similar to 1170 cm(2) V-1 s(-1) and a low sheet resistance, R similar to 210 Omega square.

[1]  Ferdinand Scholz,et al.  Strain and composition dependence of the E1(TO) mode in hexagonal Al1−xInxN thin films , 2001 .

[2]  G. Bahir,et al.  InAlN/GaN heterostructure field-effect transistor DC and small-signal characteristics , 2004 .

[3]  Jürgen Christen,et al.  Metal-organic vapor phase epitaxy and properties of AlInN in the whole compositional range , 2007 .

[4]  Marc Ilegems,et al.  Crack-free fully epitaxial nitride microcavity using highly reflective AlInN∕GaN Bragg mirrors , 2005 .

[5]  J. Massies,et al.  Strong light-matter coupling at room temperature in simple geometry GaN microcavities grown on silicon , 2005 .

[6]  Joerg Heber,et al.  Comparative study of ultrafast intersubband electron scattering times at ̃1.55 μm wavelength in GaN/AlGaN heterostructures , 2002 .

[7]  C. Gaquiere,et al.  Evaluation of AlInN=GaN HEMTs on sapphire substrate in microwave, time and temperature domains , 2007 .

[8]  Bernard Beaumont,et al.  METALORGANIC VAPOR-PHASE EPITAXY-GROWN ALGAN MATERIALS FOR VISIBLE-BLIND ULTRAVIOLET PHOTODETECTOR APPLICATIONS , 1999 .

[9]  U. Mishra,et al.  30-W/mm GaN HEMTs by field plate optimization , 2004, IEEE Electron Device Letters.

[10]  T. Taguchi,et al.  Temperature dependence of Stokes shift in InxGa1−xN epitaxial layers , 2003 .

[11]  M. Asif Khan,et al.  Improved performance of 325-nm emission AlGaN ultraviolet light-emitting diodes , 2003 .

[12]  J. Carlin,et al.  High-quality AlInN for high index contrast Bragg mirrors lattice matched to GaN , 2003 .

[13]  G. Auner,et al.  Ultraviolet and visible resonance-enhanced Raman scattering in epitaxial Al1−xInxN thin films , 2001 .

[14]  H. Amano,et al.  Structural and optical properties of AlInN and AlGaInN on GaN grown by metalorganic vapor phase epitaxy , 1998 .

[15]  Toshiaki Matsui,et al.  InAlN/GaN Heterostructure Field-Effect Transistors Grown by Plasma-Assisted Molecular-Beam Epitaxy , 2004 .

[16]  Marc Ilegems,et al.  Midinfrared intersubband absorption in lattice-matched AlInN/GaN multiple quantum wells , 2005 .

[17]  David Vanderbilt,et al.  Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997 .

[18]  J. Ager,et al.  Hardness and fracture toughness of bulk single crystal gallium nitride , 1996 .

[19]  Debdeep Jena,et al.  Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications , 2007 .

[20]  Jacek A. Majewski,et al.  Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures , 2002 .

[21]  Eric Feltin,et al.  Impact of inhomogeneous excitonic broadening on the strong exciton-photon coupling in quantum well nitride microcavities , 2006 .

[22]  M. Dawson,et al.  Use of AlInN layers in optical monitoring of growth of GaN-based structures on free-standing GaN substrates , 2005 .

[23]  Eugene E. Haller,et al.  Unusual properties of the fundamental band gap of InN , 2002 .

[24]  Y. Kobayashi,et al.  Preparation and properties of III‐V nitride thin films , 1989 .

[25]  E. L. Portnoi,et al.  Decomposition and stability of group-III nitride ternary cubic spontaneously ordered alloys , 1998 .

[26]  Jens Birch,et al.  Magnetron sputter epitaxy of wurtzite Al1−xInxN(0.1 , 2005 .

[27]  Catalano,et al.  Room temperature lasing at blue wavelengths in gallium nitride microcavities , 1999, Science.

[28]  Ratna Naik,et al.  Optical and electrical properties of Al1−xInxN films grown by plasma source molecular-beam epitaxy , 2001 .

[29]  F. Bernardini,et al.  Accurate calculation of polarization-related quantities in semiconductors , 2001 .

[30]  P. Lagoudakis,et al.  Blue lasing at room temperature in an optically pumped lattice-matched AlInN=GaN VCSEL structure , 2007 .

[31]  Kazuo Nakajima,et al.  Fundamental absorption edge in GaN, InN and their alloys , 1972 .

[32]  Eric Feltin,et al.  Impact of disorder on high quality factor III-V nitride microcavities , 2006 .

[33]  Shuji Nakamura,et al.  The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes , 1998 .

[34]  J. Carlin,et al.  Selective oxidation of AlInN layers for current confinement in III–nitride devices , 2005 .

[35]  Hajime Okumura,et al.  Lattice-matched InAlN/GaN two-dimensional electron gas with high mobility and sheet carrier density by plasma-assisted molecular beam epitaxy , 2007 .

[36]  M. Stutzmann,et al.  AlxGa1–xN—A New Material System for Biosensors , 2003 .

[37]  Machida,et al.  Microcavity semiconductor laser with enhanced spontaneous emission. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[38]  I. Yonenaga,et al.  Hardness of Bulk Single-Crystal Gallium Nitride at High Temperatures , 2000 .

[39]  A. Yoshikawa,et al.  Step-Flow Growth of In-Polar InN by Molecular Beam Epitaxy , 2006 .

[40]  Isamu Akasaki,et al.  Anomalous features in the optical properties of Al1−xInxN on GaN grown by metal organic vapor phase epitaxy , 2000 .

[41]  A. Nurmikko,et al.  Stress Engineering During Metalorganic Chemical Vapor Deposition of AlGaN/GaN Distributed Bragg Reflectors , 2001 .

[42]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[43]  K. Starosta RF sputtering of AlxIn1−xN thin films , 1981 .

[44]  Joachim Piprek,et al.  Band gap bowing and refractive index spectra of polycrystalline AlxIn1−xN films deposited by sputtering , 1997 .

[45]  David J. Smith,et al.  Observation of vertical honeycomb structure in InAlN∕GaN heterostructures due to lateral phase separation , 2007 .

[46]  R. Martin,et al.  Selective wet etching of lattice-matched AlInN-GaN heterostructures , 2007 .

[47]  Jenshan Lin,et al.  TOPICAL REVIEW: GaN-based diodes and transistors for chemical, gas, biological and pressure sensing , 2004 .

[48]  J. Carlin,et al.  Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells , 2007 .

[49]  Hiroshi Ogawa,et al.  Growth of AlxIn1−xN single crystal films by microwave-excited metalorganic vapor phase epitaxy , 1995 .

[50]  Adriana Passaseo,et al.  Oxidation kinetics of AlAs and (AlGa)As layers in GaAs-based diode laser structures: comparative analysis of available experimental data , 2004 .

[51]  Marc Ilegems,et al.  Lattice-matched distributed Bragg reflectors for nitride-based vertical cavity surface emitting lasers , 2005 .

[52]  Debdeep Jena,et al.  High-mobility window for two-dimensional electron gases at ultrathin AlN∕GaN heterojunctions , 2007 .

[53]  J. Zolper,et al.  Etching processes for fabrication of GaN/InGaN/AlN microdisk laser structures , 1996 .

[54]  J. Bläsing,et al.  Thermal stability of metal organic vapor phase epitaxy grown AlInN , 2007 .

[55]  Eric Feltin,et al.  High electron mobility lattice-matched AlInN∕GaN field-effect transistor heterostructures , 2006 .

[56]  J. Carlin,et al.  Crack-free highly reflective AlInN /AlGaN Bragg mirrors for UV applications , 2006 .

[57]  Wladek Walukiewicz,et al.  Universal bandgap bowing in group III nitride alloys , 2003 .

[58]  248 nm cathodoluminescence in Al1- xInxN(0001) thin films grown on lattice-matched Ti1- yZryN(111) seed layers by low temperature magnetron sputter epitaxy , 2006 .

[59]  B. V. Shanabrook,et al.  Molecular beam epitaxy of InAlN∕GaN heterostructures for high electron mobility transistors , 2005 .

[60]  A. Yoshikawa,et al.  Growth and Characterization of AlInN Ternary Alloys in Whole Composition Range and Fabrication of InN/AlInN Multiple Quantum Wells by RF Molecular Beam Epitaxy , 2006 .

[61]  E. Kohn,et al.  High-sheet-charge–carrier-density AlInN∕GaN field-effect transistors on Si(111) , 2004 .

[62]  J. Massies,et al.  GaN and AlxGa1−xN molecular beam epitaxy monitored by reflection high-energy electron diffraction , 1997 .

[63]  J. Carlin,et al.  Room-temperature polariton luminescence from a bulk GaN microcavity , 2006 .

[64]  L. Hultman,et al.  Deviations from Vegard's rule in Al1-xInxN (0001) alloy thin films grown by magnetron sputter epitaxy , 2007 .

[65]  B. E. Hammons,et al.  Advances in selective wet oxidation of AlGaAs alloys , 1997 .

[66]  T. Andersson,et al.  Two-dimensional electron mobility limitation mechanisms in Al x Ga 1-x N/GaN heterostructures , 2005 .

[67]  Oliver Ambacher,et al.  Optical constants of epitaxial AlGaN films and their temperature dependence , 1997 .

[68]  V. G. Deibuk,et al.  Thermodynamic stability and redistribution of charges in ternary AlGaN, InGaN, and InAlN alloys , 2005 .

[69]  Satoshi Kamiyama,et al.  Recombination dynamics of localized excitons in Al1−xInxN epitaxial films on GaN templates grown by metalorganic vapor phase epitaxy , 2003 .

[70]  J. Bläsing,et al.  Erratum: “Metal-organic vapor phase epitaxy and properties of AlInN in the whole compositional range” [Appl. Phys. Lett.90, 022105 (2007)] , 2007 .

[71]  J. Massies,et al.  Effects of Built-in Polarization Field on the Optical Properties of AlGaN/GaN Quantum Wells , 1999 .

[72]  W. Nakwaski,et al.  Designing guidelines for possible continuous-wave-operating nitride vertical-cavity surface-emitting lasers , 2000 .

[73]  Marc Ilegems,et al.  Progress in AlInN-GaN Bragg reflectors: Application to a microcavity light emitting diode , 2005 .

[74]  Y. Arakawa,et al.  Highly reflective GaN/Al0.34Ga0.66N quarter-wave reflectors grown by metal organic chemical vapor deposition , 1998 .

[75]  S. Denbaars,et al.  AlN/GaN and (Al,Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy , 2001 .

[76]  P. Lagoudakis,et al.  Room-temperature polariton lasing in semiconductor microcavities. , 2007, Physical review letters.

[77]  Vincenzo Fiorentini,et al.  Spontaneous versus Piezoelectric Polarization in III–V Nitrides: Conceptual Aspects and Practical Consequences , 1999 .

[78]  Manijeh Razeghi,et al.  Determination of the band-gap energy of Al 12x In x N grown by metal-organic chemical-vapor deposition , 1997 .

[79]  A. R. Sugg,et al.  Hydrolyzation oxidation of AlxGa1−xAs‐AlAs‐GaAs quantum well heterostructures and superlattices , 1990 .

[80]  J. Kuzmik,et al.  Power electronics on InAlN/(In)GaN: Prospect for a record performance , 2001, IEEE Electron Device Letters.

[81]  J. B. Lam,et al.  Dynamics of anomalous optical transitions in Al x Ga 1 − x N alloys , 2000 .

[82]  A. Kavokin,et al.  GaN microcavities: Giant Rabi splitting and optical anisotropy , 1998 .

[83]  Eric Feltin,et al.  Progresses in III‐nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials , 2005 .

[84]  Marc Ilegems,et al.  Recent Progress in the Growth of Highly Reflective Nitride-Based Distributed Bragg Reflectors and Their Use in Microcavities , 2005 .

[85]  S. J. Pearton,et al.  Growth of InxGa1−xN and InxAl1−xN on GaAs metalorganic molecular beam epitaxy , 1995 .

[86]  Nicolas Grandjean,et al.  Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells , 1999 .

[87]  M. Willander,et al.  III–nitrides: Growth, characterization, and properties , 2000 .

[88]  E. Alves,et al.  Anomalous ion channeling in AlInN/GaN bilayers: determination of the strain state. , 2006, Physical review letters.

[89]  O. Ambacher,et al.  The polarization-induced electron gas in a heterostructure , 2000 .

[90]  Eric Feltin,et al.  Efficient current injection scheme for nitride vertical cavity surface emitting lasers , 2007 .

[91]  M. Manfra,et al.  Optimized growth of lattice-matched InxAl1−xN∕GaN heterostructures by molecular beam epitaxy , 2007 .