On the number of frames in binary words

Abstract A frame is a square u u , where u is an unbordered word. Let F ( n ) denote the maximum number of distinct frames in a binary word of length n . We count this number for small values of n and show that F ( n ) is at most ⌊ n / 2 ⌋ + 8 for all n and greater than 7 n / 30 − ϵ for any positive ϵ and infinitely many  n . We also show that Fibonacci words, which are known to contain plenty of distinct squares, have only a few frames. Moreover, by modifying the Thue–Morse word, we prove that the minimum number of occurrences of frames in a word of length  n is ⌈ n / 2 ⌉ − 2 .

[1]  Adriaan J. de Lind van Wijngaarden,et al.  On the construction of maximal prefix-synchronized codes , 1996, IEEE Trans. Inf. Theory.

[2]  Aviezri S. Fraenkel,et al.  How Many Squares Must a Binary Sequence Contain? , 1997, Electron. J. Comb..

[3]  J. Berstel,et al.  Theory of codes , 1985 .

[4]  Lucian Ilie,et al.  A note on the number of squares in a word , 2007, Theor. Comput. Sci..

[5]  Srecko Brlek,et al.  Enumeration of factors in the Thue-Morse word , 1989, Discret. Appl. Math..

[6]  Tero Harju,et al.  Binary Words with Few Squares , 2006, Bull. EATCS.

[7]  Maxime Crochemore,et al.  An Optimal Algorithm for Computing the Repetitions in a Word , 1981, Inf. Process. Lett..

[8]  M. Lothaire,et al.  Applied Combinatorics on Words , 2005 .

[9]  Tero Harju,et al.  Density of Critical Factorizations , 2002, RAIRO Theor. Informatics Appl..

[10]  Jamie Simpson,et al.  The Exact Number of Squares in Fibonacci Words , 1999, Theor. Comput. Sci..

[11]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[12]  Tero Harju,et al.  Border correlation of binary words , 2004, J. Comb. Theory A.

[13]  Jeffrey Shallit,et al.  Avoiding large squares in infinite binary words , 2003, Theor. Comput. Sci..

[14]  Jean-Pierre Duval,et al.  Relationship between the period of a finite word and the length of its unbordered segments , 1982, Discret. Math..

[15]  James D. Currie,et al.  Least Periods of Factors of Infinite Words , 2009, RAIRO Theor. Informatics Appl..

[16]  Aviezri S. Fraenkel,et al.  How Many Squares Can a String Contain? , 1998, J. Comb. Theory, Ser. A.

[17]  Jean-Jacques Pansiot,et al.  The Morse Sequence and Iterated Morphisms , 1981, Inf. Process. Lett..

[18]  Gregory Kucherov,et al.  How Many Square Occurrences Must a Binary Sequence Contain? , 2003, Electron. J. Comb..

[19]  Lucian Ilie,et al.  A simple proof that a word of length n has at most 2n distinct squares , 2005, J. Comb. Theory A.

[20]  Wai-Fong Chuan,et al.  Unbordered Factors of Characteristic Sequences of Irrational Numbers , 1998, Theor. Comput. Sci..

[21]  José Carlos Costa Biinfinite words with maximal recurrent unbordered factors , 2003, Theor. Comput. Sci..

[22]  Andrzej Ehrenfeucht,et al.  Periodicity and unbordered segments of words , 1979, Discret. Math..

[23]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[24]  Tao Jiang,et al.  Rotations of Periodic Strings and Short Superstrings , 1996, J. Algorithms.