Visual Interaction with Deep Learning Models through Collaborative Semantic Inference

Automation of tasks can have critical consequences when humans lose agency over decision processes. Deep learning models are particularly susceptible since current black-box approaches lack explainable reasoning. We argue that both the visual interface and model structure of deep learning systems need to take into account interaction design. We propose a framework of collaborative semantic inference (CSI) for the co-design of interactions and models to enable visual collaboration between humans and algorithms. The approach exposes the intermediate reasoning process of models which allows semantic interactions with the visual metaphors of a problem, which means that a user can both understand and control parts of the model reasoning process. We demonstrate the feasibility of CSI with a co-designed case study of a document summarization system.

[1]  Kenney Ng,et al.  Interacting with Predictions: Visual Inspection of Black-box Machine Learning Models , 2016, CHI.

[2]  Yonatan Belinkov,et al.  What do Neural Machine Translation Models Learn about Morphology? , 2017, ACL.

[3]  Alexander M. Rush,et al.  Seq2seq-Vis: A Visual Debugging Tool for Sequence-to-Sequence Models , 2018, IEEE Transactions on Visualization and Computer Graphics.

[4]  David Gotz,et al.  Progressive Visual Analytics: User-Driven Visual Exploration of In-Progress Analytics , 2014, IEEE Transactions on Visualization and Computer Graphics.

[5]  Jeffrey Heer,et al.  Human Effort and Machine Learnability in Computer Aided Translation , 2014, EMNLP.

[6]  Yindalon Aphinyanagphongs,et al.  A Workflow for Visual Diagnostics of Binary Classifiers using Instance-Level Explanations , 2017, 2017 IEEE Conference on Visual Analytics Science and Technology (VAST).

[7]  Zachary Chase Lipton The mythos of model interpretability , 2016, ACM Queue.

[8]  Shixia Liu,et al.  Recent research advances on interactive machine learning , 2018, J. Vis..

[9]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[10]  Maya Cakmak,et al.  Power to the People: The Role of Humans in Interactive Machine Learning , 2014, AI Mag..

[11]  Dumitru Erhan,et al.  The (Un)reliability of saliency methods , 2017, Explainable AI.

[12]  Alexander M. Rush,et al.  A Tutorial on Deep Latent Variable Models of Natural Language , 2018, ArXiv.

[13]  Hod Lipson,et al.  Understanding Neural Networks Through Deep Visualization , 2015, ArXiv.

[14]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[15]  Oluwasanmi Koyejo,et al.  Examples are not enough, learn to criticize! Criticism for Interpretability , 2016, NIPS.

[16]  Zhimin Li,et al.  NLIZE: A Perturbation-Driven Visual Interrogation Tool for Analyzing and Interpreting Natural Language Inference Models , 2019, IEEE Transactions on Visualization and Computer Graphics.

[17]  Sebastian Gehrmann,et al.  Debugging Sequence-to-Sequence Models with Seq2Seq-Vis , 2018, BlackboxNLP@EMNLP.

[18]  Xinlei Chen,et al.  Visualizing and Understanding Neural Models in NLP , 2015, NAACL.

[19]  Carmen Lacave,et al.  A review of explanation methods for Bayesian networks , 2002, The Knowledge Engineering Review.

[20]  Alexander M. Rush,et al.  LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks , 2016, IEEE Transactions on Visualization and Computer Graphics.

[21]  Finale Doshi-Velez,et al.  Semi-Supervised Prediction-Constrained Topic Models , 2018, AISTATS.

[22]  Martin Wattenberg,et al.  Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow , 2018, IEEE Transactions on Visualization and Computer Graphics.

[23]  Dylan Cashman,et al.  RNNbow: Visualizing Learning Via Backpropagation Gradients in RNNs , 2018, IEEE Computer Graphics and Applications.

[24]  Ming Yin,et al.  Understanding the Effect of Accuracy on Trust in Machine Learning Models , 2019, CHI.

[25]  Thomas G. Dietterich,et al.  Interacting meaningfully with machine learning systems: Three experiments , 2009, Int. J. Hum. Comput. Stud..

[26]  Bolei Zhou,et al.  GAN Dissection: Visualizing and Understanding Generative Adversarial Networks , 2018, ICLR.

[27]  Weng-Keen Wong,et al.  Principles of Explanatory Debugging to Personalize Interactive Machine Learning , 2015, IUI.

[28]  Minsuk Kahng,et al.  Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers , 2018, IEEE Transactions on Visualization and Computer Graphics.

[29]  Jerry Alan Fails,et al.  Interactive machine learning , 2003, IUI '03.

[30]  Kwan-Liu Ma,et al.  Opening the black box - data driven visualization of neural networks , 2005, VIS 05. IEEE Visualization, 2005..

[31]  Miroslav Dudík,et al.  Improving Fairness in Machine Learning Systems: What Do Industry Practitioners Need? , 2018, CHI.

[32]  Daniel A. Keim,et al.  Visual Analytics: Definition, Process, and Challenges , 2008, Information Visualization.

[33]  Anind K. Dey,et al.  Why and why not explanations improve the intelligibility of context-aware intelligent systems , 2009, CHI.

[34]  Taesung Park,et al.  Semantic Image Synthesis With Spatially-Adaptive Normalization , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Christopher D. Manning,et al.  Get To The Point: Summarization with Pointer-Generator Networks , 2017, ACL.

[36]  Zhen Li,et al.  Understanding Hidden Memories of Recurrent Neural Networks , 2017, 2017 IEEE Conference on Visual Analytics Science and Technology (VAST).

[37]  Martin Wattenberg,et al.  Embedding Projector: Interactive Visualization and Interpretation of Embeddings , 2016, ArXiv.

[38]  Yonatan Belinkov,et al.  What Is One Grain of Sand in the Desert? Analyzing Individual Neurons in Deep NLP Models , 2018, AAAI.

[39]  David A. Cohn,et al.  Active Learning with Statistical Models , 1996, NIPS.

[40]  Michael S. Bernstein,et al.  Soylent: a word processor with a crowd inside , 2010, UIST.

[41]  Eric Horvitz,et al.  Principles of mixed-initiative user interfaces , 1999, CHI '99.

[42]  Andrew M. Dai,et al.  Music Transformer: Generating Music with Long-Term Structure , 2018, ICLR.

[43]  Paulo J. G. Lisboa,et al.  Making machine learning models interpretable , 2012, ESANN.

[44]  Barbara J. Grosz,et al.  Collaborative Systems (AAAI-94 Presidential Address) , 1996 .

[45]  Jeffrey Heer,et al.  Agency plus automation: Designing artificial intelligence into interactive systems , 2019, Proceedings of the National Academy of Sciences.

[46]  Varun Ramakrishna,et al.  Predicting Multiple Structured Visual Interpretations , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[47]  Tobias Höllerer,et al.  TasteWeights: a visual interactive hybrid recommender system , 2012, RecSys.

[48]  Been Kim,et al.  Sanity Checks for Saliency Maps , 2018, NeurIPS.

[49]  Ross Maciejewski,et al.  The State‐of‐the‐Art in Predictive Visual Analytics , 2017, Comput. Graph. Forum.

[50]  Tamara Babaian,et al.  A writer's collaborative assistant , 2002, IUI '02.

[51]  Minsuk Kahng,et al.  ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models , 2017, IEEE Transactions on Visualization and Computer Graphics.

[52]  Jude W. Shavlik,et al.  Using neural networks for data mining , 1997, Future Gener. Comput. Syst..

[53]  Tom Williams Toward Ethical Natural Language Generation for Human-Robot Interaction , 2018, HRI.

[54]  Xiting Wang,et al.  Towards better analysis of machine learning models: A visual analytics perspective , 2017, Vis. Informatics.

[55]  Elmar Eisemann,et al.  DeepEyes: Progressive Visual Analytics for Designing Deep Neural Networks , 2018, IEEE Transactions on Visualization and Computer Graphics.

[56]  Chris North,et al.  Semantic interaction for visual text analytics , 2012, CHI.

[57]  Andreas Holzinger,et al.  Interactive machine learning for health informatics: when do we need the human-in-the-loop? , 2016, Brain Informatics.

[58]  Duen Horng Chau,et al.  ShapeShop: Towards Understanding Deep Learning Representations via Interactive Experimentation , 2017, CHI Extended Abstracts.

[59]  Jimeng Sun,et al.  RetainVis: Visual Analytics with Interpretable and Interactive Recurrent Neural Networks on Electronic Medical Records , 2018, IEEE Transactions on Visualization and Computer Graphics.

[60]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[61]  Weng-Keen Wong,et al.  Explanatory Debugging: Supporting End-User Debugging of Machine-Learned Programs , 2010, VL/HCC.

[62]  Martin Wattenberg,et al.  Direct-Manipulation Visualization of Deep Networks , 2017, ArXiv.

[63]  Krzysztof Z. Gajos,et al.  Sentiment Bias in Predictive Text Recommendations Results in Biased Writing , 2018, Graphics Interface.

[64]  Matthew Guzdial,et al.  A General Level Design Editor for Co-Creative Level Design , 2017, AIIDE Workshops.

[65]  Max Welling,et al.  Visualizing Deep Neural Network Decisions: Prediction Difference Analysis , 2017, ICLR.

[66]  Yang Wang,et al.  Manifold: A Model-Agnostic Framework for Interpretation and Diagnosis of Machine Learning Models , 2018, IEEE Transactions on Visualization and Computer Graphics.

[67]  R. Jordan Crouser,et al.  Online Submission ID: 200 An Affordance-Based Framework for Human Computation and Human-Computer Collaboration , 2022 .

[68]  Qian Yang,et al.  Machine Learning as a UX Design Material: How Can We Imagine Beyond Automation, Recommenders, and Reminders? , 2018, AAAI Spring Symposia.

[69]  Chris Russell,et al.  Counterfactual Explanations Without Opening the Black Box: Automated Decisions and the GDPR , 2017, ArXiv.

[70]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[71]  Johannes Gehrke,et al.  Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission , 2015, KDD.

[72]  Yann Dauphin,et al.  Hierarchical Neural Story Generation , 2018, ACL.

[73]  Yonatan Belinkov,et al.  Analysis Methods in Neural Language Processing: A Survey , 2018, TACL.

[74]  Yoshua Bengio,et al.  Show, Attend and Tell: Neural Image Caption Generation with Visual Attention , 2015, ICML.

[75]  G. Tourassi,et al.  Visualization for Classification in Deep Neural Networks , 2017 .

[76]  Vladlen Koltun,et al.  Photographic Image Synthesis with Cascaded Refinement Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[77]  Alexander M. Rush,et al.  Bottom-Up Abstractive Summarization , 2018, EMNLP.

[78]  Min Chen,et al.  VIS4ML: An Ontology for Visual Analytics Assisted Machine Learning , 2019, IEEE Transactions on Visualization and Computer Graphics.

[79]  Vincent Dumoulin,et al.  Deconvolution and Checkerboard Artifacts , 2016 .

[80]  Jan Kautz,et al.  High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[81]  Kathleen McKeown,et al.  The decomposition of human-written summary sentences , 1999, SIGIR '99.

[82]  Alex Endert,et al.  The State of the Art in Integrating Machine Learning into Visual Analytics , 2017, Comput. Graph. Forum.

[83]  Vivian Lai,et al.  On Human Predictions with Explanations and Predictions of Machine Learning Models: A Case Study on Deception Detection , 2018, FAT.

[84]  Hao Yang,et al.  GANViz: A Visual Analytics Approach to Understand the Adversarial Game , 2018, IEEE Transactions on Visualization and Computer Graphics.

[85]  Regina Barzilay,et al.  Rationalizing Neural Predictions , 2016, EMNLP.

[86]  Yiming Yang,et al.  A Comparative Study on Feature Selection in Text Categorization , 1997, ICML.

[87]  Yejin Choi,et al.  Globally Coherent Text Generation with Neural Checklist Models , 2016, EMNLP.