ZART: A Multifunctional Itemset Mining Algorithm

In this paper, we present and detail a multifunctional itemset mining algorithm called Zart, which is based on the Pascal algorithm. Zart shows a number of additional features and performs the following, usually independent, tasks: identify frequent closed itemsets and associate generators to their closures. This makes Zart a complete algorithm for computing classes of itemsets including generators and closed itemsets. These characteristics allow one to extract minimal non-redundant association rules, a useful and lossless representation of association rules. In addition, being based on the Pascal algorithm, Zart has a rather efficient behavior on weakly and strongly correlated data. Accordingly, Zart is at the heart of the Coron platform, which is a domain independent, multi-purposed data mining platform, incorporating a rich collection of data mining algorithms.

[1]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[2]  Nicolas Pasquier,et al.  Closed Set Based Discovery of Small Covers for Association Rules , 1999, Proc. 15èmes Journées Bases de Données Avancées, BDA.

[3]  Vincent Duquenne,et al.  Familles minimales d'implications informatives résultant d'un tableau de données binaires , 1986 .

[4]  Gerd Stumme,et al.  Computing iceberg concept lattices with T , 2002, Data Knowl. Eng..

[5]  Jean-François Boulicaut,et al.  Approximation of Frequency Queris by Means of Free-Sets , 2000, PKDD.

[6]  Mohammed J. Zaki Scalable Algorithms for Association Mining , 2000, IEEE Trans. Knowl. Data Eng..

[7]  Toon Calders,et al.  Mining All Non-derivable Frequent Itemsets , 2002, PKDD.

[8]  Christophe Rigotti,et al.  A condensed representation to find frequent patterns , 2001, PODS '01.

[9]  Mohammed J. Zaki,et al.  CHARM: An Efficient Algorithm for Closed Itemset Mining , 2002, SDM.

[10]  Marzena Kryszkiewicz Concise representation of frequent patterns based on disjunction-free generators , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[11]  Jitender S. Deogun,et al.  Discovering representative episodal association rules from event sequences using frequent closed episode sets and event constraints , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[12]  Marzena Kryszkiewicz,et al.  Representative Association Rules , 1998, PAKDD.

[13]  Marzena Kryszkiewicz,et al.  Why to Apply Generalized Disjunction-Free Generators Representation of Frequent Patterns? , 2002, ISMIS.

[14]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[15]  Nicolas Pasquier,et al.  Discovering Frequent Closed Itemsets for Association Rules , 1999, ICDT.

[16]  Gerd Stumme,et al.  PASCAL : un algorithme d extraction des motifs fréquents , 2002, Tech. Sci. Informatiques.

[17]  Laszlo Szathmary,et al.  Symbolic Data Mining Methods with the Coron Platform. (Méthodes symboliques de fouille de données avec la plate-forme Coron) , 2006 .

[18]  Amedeo Napoli,et al.  CORON: A Framework for Levelwise Itemset Mining Algorithms , 2005 .

[19]  Nicolas Pasquier,et al.  Efficient Mining of Association Rules Using Closed Itemset Lattices , 1999, Inf. Syst..

[20]  Nicolas Pasquier Mining Association Rules using Formal Concept Analysis , 2000 .

[21]  Gerd Stumme,et al.  Mining frequent patterns with counting inference , 2000, SKDD.

[22]  Marzena Kryszkiewicz Concise Representations of Association Rules , 2002, Pattern Detection and Discovery.

[23]  Toon Calders,et al.  Depth-First Non-Derivable Itemset Mining , 2005, SDM.

[24]  Michael Luxenburger,et al.  Implications partielles dans un contexte , 1991 .

[25]  Gerd Stumme,et al.  Mining Minimal Non-redundant Association Rules Using Frequent Closed Itemsets , 2000, Computational Logic.