On population-based simulation for static inference

Abstract In this paper we present a review of population-based simulation for static inference problems. Such methods can be described as generating a collection of random variables {Xn}n=1,…,N in parallel in order to simulate from some target density π (or potentially sequence of target densities). Population-based simulation is important as many challenging sampling problems in applied statistics cannot be dealt with successfully by conventional Markov chain Monte Carlo (MCMC) methods. We summarize population-based MCMC (Geyer, Computing Science and Statistics: The 23rd Symposium on the Interface, pp. 156–163, 1991; Liang and Wong, J. Am. Stat. Assoc. 96, 653–666, 2001) and sequential Monte Carlo samplers (SMC) (Del Moral, Doucet and Jasra, J. Roy. Stat. Soc. Ser. B 68, 411–436, 2006a), providing a comparison of the approaches. We give numerical examples from Bayesian mixture modelling (Richardson and Green, J. Roy. Stat. Soc. Ser. B 59, 731–792, 1997).

[1]  Zhongrong Zheng On swapping and simulated tempering algorithms , 2003 .

[2]  Arnaud Doucet,et al.  Stability of sequential Monte Carlo samplers via the Foster-Lyapunov condition , 2008 .

[3]  Jun S. Liu,et al.  The Wang-Landau Algorithm for Monte Carlo computation in general state spaces , 2005 .

[4]  P. Moral,et al.  On a Class of Genealogical and Interacting Metropolis Models , 2003 .

[5]  Jun S. Liu,et al.  Rejection Control and Sequential Importance Sampling , 1998 .

[6]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[7]  James E. Baker,et al.  Adaptive Selection Methods for Genetic Algorithms , 1985, International Conference on Genetic Algorithms.

[8]  Loukia Meligkotsidou,et al.  Filtering Methods for Mixture Models , 2007 .

[9]  Yuguo Chen,et al.  Stopping‐time resampling for sequential Monte Carlo methods , 2005 .

[10]  C. Holmes,et al.  MCMC and the Label Switching Problem in Bayesian Mixture Modelling 1 Markov Chain Monte Carlo Methods and the Label Switching Problem in Bayesian Mixture Modelling , 2004 .

[11]  N. Chopin Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference , 2004, math/0508594.

[12]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[13]  E. F. Deveney,et al.  MEASUREMENTS OF POSITRONS FROM PAIR PRODUCTION IN COULOMB COLLISIONS OF 33-TEV LEAD IONS WITH FIXED TARGETS , 1997 .

[14]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[15]  J. Hammersley,et al.  Poor Man's Monte Carlo , 1954 .

[16]  Ajay Jasra,et al.  Bayesian inference for mixture models via Monte Carlo computation , 2006 .

[17]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[18]  P. Moral,et al.  Branching and interacting particle systems. Approximations of Feynman-Kac formulae with applications to non-linear filtering , 2000 .

[19]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[20]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[21]  Darrell Whitley,et al.  A genetic algorithm tutorial , 1994, Statistics and Computing.

[22]  Radford M. Neal Sampling from multimodal distributions using tempered transitions , 1996, Stat. Comput..

[23]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[24]  P. Moral,et al.  Sequential Monte Carlo samplers for rare events , 2006 .

[25]  D. Titterington,et al.  Bayesian inference in hidden Markov modelsthrough reversible jump Markov chain Monte , 2022 .

[26]  Jeffrey S. Rosenthal,et al.  Coupling and Ergodicity of Adaptive MCMC , 2007 .

[27]  D. Stephens,et al.  A Quantitative Study of Gene Regulation Involved in the Immune Response of Anopheline Mosquitoes , 2006 .

[28]  C. Andrieu,et al.  On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.

[29]  Yukito IBA,et al.  Population Monte Carlo algorithms , 2000, cond-mat/0008226.

[30]  Jean-Michel Marin,et al.  Convergence of Adaptive Sampling Schemes , 2004 .

[31]  P. Matthews A slowly mixing Markov chain with implications for Gibbs sampling , 1993 .

[32]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[33]  P. Moral,et al.  NON-LINEAR MARKOV CHAIN MONTE CARLO , 2007 .

[34]  H. Künsch,et al.  Recursive Monte Carlo filters , 2003 .

[35]  C. Robert,et al.  Bayesian inference in hidden Markov models through the reversible jump Markov chain Monte Carlo method , 2000 .

[36]  Jun S. Liu,et al.  On learning strategies for evolutionary Monte Carlo , 2007, Stat. Comput..

[37]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[38]  G. Warnes The Normal Kernel Coupler: An Adaptive Markov Chain Monte Carlo Method for Efficiently Sampling From Multi-Modal Distributions , 2001 .

[39]  Radford M. Neal Estimating Ratios of Normalizing Constants Using Linked Importance Sampling , 2005, math/0511216.

[40]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[41]  Neal Madras,et al.  On the swapping algorithm , 2003, Random Struct. Algorithms.

[42]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[43]  J. Marin,et al.  Population Monte Carlo , 2004 .

[44]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[45]  F. Liang Dynamically Weighted Importance Sampling in Monte Carlo Computation , 2002 .

[46]  Faming Liang Use of sequential structure in simulation from high-dimensional systems. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[48]  Arnaud Doucet,et al.  Sequential Monte Carlo methods for Bayesian computation , 2006 .

[49]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[50]  J. Rosenthal,et al.  General state space Markov chains and MCMC algorithms , 2004, math/0404033.

[51]  N. Chopin A sequential particle filter method for static models , 2002 .

[52]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[53]  R. Douc,et al.  Minimum variance importance sampling via Population Monte Carlo , 2007 .

[54]  P. Grassberger Pruned-enriched Rosenbluth method: Simulations of θ polymers of chain length up to 1 000 000 , 1997 .

[55]  Eric Moulines,et al.  Comparison of resampling schemes for particle filtering , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..

[56]  Arnaud Doucet,et al.  Interacting sequential Monte Carlo samplers for trans-dimensional simulation , 2008, Comput. Stat. Data Anal..

[57]  Andreas Eberle,et al.  CONVERGENCE OF SEQUENTIAL MARKOV CHAIN MONTE CARLO METHODS: I. NONLINEAR FLOW OF PROBABILITY MEASURES , 2006, math/0612074.

[58]  P. Diaconis,et al.  COMPARISON THEOREMS FOR REVERSIBLE MARKOV CHAINS , 1993 .

[59]  Y. Sugita,et al.  Replica-exchange multicanonical and multicanonical replica-exchange Monte Carlo simulations of peptides. I. Formulation and benchmark test , 2003 .

[60]  G. Stoltz,et al.  Equilibrium Sampling From Nonequilibrium Dynamics , 2005, cond-mat/0511412.

[61]  W. Wong,et al.  Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models , 2001 .

[62]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[63]  P. Green,et al.  Delayed rejection in reversible jump Metropolis–Hastings , 2001 .

[64]  R. Douc,et al.  Limit theorems for weighted samples with applications to sequential Monte Carlo methods , 2008 .

[65]  C. Robert,et al.  Controlled MCMC for Optimal Sampling , 2001 .

[66]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[67]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[68]  Ajay Jasra,et al.  Markov Chain Monte Carlo Methods and the Label Switching Problem in Bayesian Mixture Modeling , 2005 .

[69]  Xiao-Li Meng,et al.  Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .

[70]  Nicolas Chopin,et al.  Inference and model choice for sequentially ordered hidden Markov models , 2007 .

[71]  Arnaud Doucet,et al.  Convergence of Sequential Monte Carlo Methods , 2007 .

[72]  Walter R. Gilks,et al.  Adaptive Direction Sampling , 1994 .

[73]  Yukito Iba EXTENDED ENSEMBLE MONTE CARLO , 2001 .

[74]  Ajay Jasra,et al.  Population-Based Reversible Jump Markov Chain Monte Carlo , 2007, 0711.0186.

[75]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[76]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[77]  W H Wong,et al.  Dynamic weighting in Monte Carlo and optimization. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[78]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[79]  Jun S. Liu,et al.  Discussion of “Equi-energy sampler” by Kou, Zhou and Wong , 2006 .

[80]  Christophe Andrieu,et al.  A Note on Convergence of the Equi-Energy Sampler , 2007, 0711.0164.

[81]  Yuko Okamoto,et al.  Replica-exchange multicanonical and multicanonical replica-exchange Monte Carlo simulations of peptides. II. Application to a more complex system , 2003 .

[82]  Achi Brandt,et al.  Inverse Monte Carlo renormalization group transformations for critical phenomena. , 2002, Physical review letters.

[83]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[84]  S. Kou,et al.  Equi-energy sampler with applications in statistical inference and statistical mechanics , 2005, math/0507080.

[85]  Jun S. Liu,et al.  A new sequential importance sampling method and its application to the two-dimensional hydrophobic-hydrophilic model , 2002 .

[86]  H. Kunsch Recursive Monte Carlo filters: Algorithms and theoretical analysis , 2006, math/0602211.