Performance of the -ES on a Class of PDQFs

This paper investigates the behavior of (µ/µI, λ)- σSA-ES on a class of positive definite quadratic forms. After introducing the fitness environment and the strategy, the self-adaptation mechanism is analyzed with the help of the self-adaptation response function. Afterward, the steady state of the strategy is analyzed. The dynamical equations for the expectation of the mutation strength σ and the localization parameter ζ will be derived. Building on that, the progress rate ϕ is analyzed and tuned by means of the learning parameter τ. An approximate formula for τopt, yielding locally maximal progress, is presented. Finally, the performance of the σSA-rule is compared with the performance of the cumulative step size adaptation rule, and a rough approximation for the expected runtime is presented.

[1]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[2]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[3]  M. Danos,et al.  Pocketbook of mathematical functions , 1984 .

[4]  Nikolaus Hansen,et al.  Step-Size Adaption Based on Non-Local Use of Selection Information , 1994, PPSN.

[5]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: Self-Adaptation , 1995, Evolutionary Computation.

[6]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[7]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[8]  Jens Jägersküpper,et al.  Rigorous Runtime Analysis of the (1+1) ES: 1/5-Rule and Ellipsoidal Fitness Landscapes , 2005, FOGA.

[9]  Hans-Georg Beyer,et al.  On the analysis of self-adaptive recombination strategies: first results , 2005, 2005 IEEE Congress on Evolutionary Computation.

[10]  Dirk V. Arnold,et al.  Weighted multirecombination evolution strategies , 2006, Theor. Comput. Sci..

[11]  Dirk V. Arnold,et al.  On the use of evolution strategies for optimising certain positive definite quadratic forms , 2007, GECCO '07.

[12]  Jens Jägersküpper,et al.  Probabilistic analysis of evolution strategies using isotropic mutations , 2007 .

[13]  Hans-Georg Beyer,et al.  Mutative self-adaptation on the sharp and parabolic ridge , 2007, FOGA'07.

[14]  James E. Smith,et al.  Self-Adaptation in Evolutionary Algorithms for Combinatorial Optimisation , 2008, Adaptive and Multilevel Metaheuristics.

[15]  Dirk V. Arnold,et al.  Step Length Adaptation on Ridge Functions , 2008, Evolutionary Computation.