Double-layer mediated electromechanical response of amyloid fibrils in liquid environment.

Harnessing electrical bias-induced mechanical motion on the nanometer and molecular scale is a critical step toward understanding the fundamental mechanisms of redox processes and implementation of molecular electromechanical machines. Probing these phenomena in biomolecular systems requires electromechanical measurements be performed in liquid environments. Here we demonstrate the use of band excitation piezoresponse force microscopy for probing electromechanical coupling in amyloid fibrils. The approaches for separating the elastic and electromechanical contributions based on functional fits and multivariate statistical analysis are presented. We demonstrate that in the bulk of the fibril the electromechanical response is dominated by double-layer effects (consistent with shear piezoelectricity of biomolecules), while a number of electromechanically active hot spots possibly related to structural defects are observed.

[1]  Stephen Jesse,et al.  High resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force microscopy. , 2006, Physical review letters.

[2]  A. Noy Handbook of Molecular Force Spectroscopy , 2008 .

[3]  Christopher M Dobson,et al.  Spatial persistence of angular correlations in amyloid fibrils. , 2006, Physical review letters.

[4]  E. Atkins,et al.  “Cross-β” conformation in proteins☆ , 1968 .

[5]  V. Shvartsman,et al.  Nanoscale Ferroelectric Properties of PZN-PT Single Crystals Studied by Scanning Force Microscopy , 2003 .

[6]  Sergei V. Kalinin,et al.  Nanoelectromechanics of piezoresponse force microscopy , 2004, cond-mat/0408223.

[7]  James M Tour,et al.  Surface-rolling molecules. , 2006, Journal of the American Chemical Society.

[8]  Niveen M. Khashab,et al.  Light-operated mechanized nanoparticles. , 2009, Journal of the American Chemical Society.

[9]  Sergei V. Kalinin,et al.  Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. , 2008, Nature Materials.

[10]  D. Alexander,et al.  Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. , 2006, Ultramicroscopy.

[11]  G. Glenner,et al.  Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. , 1984, Biochemical and biophysical research communications.

[12]  Gary L. Thompson,et al.  Electromechanical imaging of biological systems with sub-10 nm resolution , 2008 .

[13]  Vincenzo Balzani,et al.  Light powered molecular machines. , 2009, Chemical Society reviews.

[14]  E. Atkins,et al.  "Cross-beta" conformation in proteins. , 1968, Journal of molecular biology.

[15]  Stephen Jesse,et al.  Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy , 2009, Nanotechnology.

[16]  Hyo-Jick Choi,et al.  Artificial organelle: ATP synthesis from cellular mimetic polymersomes. , 2005, Nano letters.

[17]  R. Jansen,et al.  Solvational tuning of the unfolding, aggregation and amyloidogenesis of insulin. , 2005, Journal of molecular biology.

[18]  R. Jansen,et al.  Amyloidogenic self-assembly of insulin aggregates probed by high resolution atomic force microscopy. , 2005, Biophysical journal.

[19]  Wesley R Browne,et al.  Making molecular machines work , 2006, Nature nanotechnology.

[20]  S. Jesse,et al.  A decade of piezoresponse force microscopy: progress, challenges, and opportunities , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[21]  Gerhard M. Sessler,et al.  Electromechanical response of cellular electret films , 1999 .

[22]  Stephen Jesse,et al.  The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale , 2007, 0708.4248.

[23]  C. Montemagno,et al.  Engineering hybrid nano-devices powered by the F1-ATPase biomolecular motor , 2005 .

[24]  Dominik Horinek,et al.  Molecular dynamics simulation of an electric field driven dipolar molecular rotor attached to a quartz glass surface. , 2003, Journal of the American Chemical Society.

[25]  X. Gong,et al.  A charge-driven molecular water pump. , 2007, Nature nanotechnology.

[26]  Noël Bonnet,et al.  Some trends in microscope image processing. , 2004, Micron.

[27]  J. Gajewski,et al.  Double-layer electret transducer , 1997 .

[28]  Ute Rabe,et al.  Vibrations of free and surface‐coupled atomic force microscope cantilevers: Theory and experiment , 1996 .

[29]  James R Heath,et al.  Free energy barrier for molecular motions in bistable [2]rotaxane molecular electronic devices. , 2009, The journal of physical chemistry. A.

[30]  SenLi Guo,et al.  Packing density and structural heterogeneity of insulin amyloid fibrils measured by AFM nanoindentation. , 2006, Biomacromolecules.

[31]  S. Störkel,et al.  Iatrogenic, insulin-dependent, local amyloidosis. , 1983, Laboratory investigation; a journal of technical methods and pathology.

[32]  Alexei Gruverman,et al.  Nanoscale ferroelectrics: processing, characterization and future trends , 2006 .

[33]  Alexander E Dityatev,et al.  β-amyloid and glutamate receptors , 2008, Experimental Neurology.

[34]  William A. Goddard,et al.  Meccano on the Nanoscale — A Blueprint for Making Some of the World′s Tiniest Machines , 2004 .

[35]  W. Arnold,et al.  Theoretical description of the transfer of vibrations from a sample to the cantilever of an atomic force microscope , 1997 .

[36]  J. Sipe,et al.  Review: history of the amyloid fibril. , 2000, Journal of structural biology.

[37]  Sergei V. Kalinin,et al.  Piezoresponse Force Microscopy , 2009, Microscopy Today.

[38]  R. Kyle Amyloidosis: a convoluted story , 2001 .

[39]  Technology,et al.  Domain wall creep in epitaxial ferroelectric Pb(Zr(0.2)Ti(0.08)O(3) thin films. , 2002, Physical review letters.

[40]  Stephen Jesse,et al.  Local thermomechanical characterization of phase transitions using band excitation atomic force acoustic microscopy with heated probe , 2008 .

[41]  Michele Vendruscolo,et al.  Role of Intermolecular Forces in Defining Material Properties of Protein Nanofibrils , 2007, Science.

[42]  Stephen Jesse,et al.  Resonance enhancement in piezoresponse force microscopy: Mapping electromechanical activity, contact stiffness, and Q factor , 2006 .

[43]  B. Damaschke,et al.  Measurement of nanohardness and nanoelasticity of thin gold films with scanning force microscope , 2000 .

[44]  Josef Michl,et al.  Molecular dynamics of a grid-mounted molecular dipolar rotor in a rotating electric field , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[45]  J. Tour,et al.  Real-time measurements of conductance switching and motion of single oligo(phenylene ethynylene) molecules. , 2007, Journal of the American Chemical Society.

[46]  SenLi Guo,et al.  Investigation of mechanical properties of insulin crystals by atomic force microscopy. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[47]  Stephen Jesse,et al.  Towards local electromechanical probing of cellular and biomolecular systems in a liquid environment. , 2007, Nanotechnology.

[48]  C. Richards,et al.  Examination of insulin injection sites: an unexpected finding of localized amyloidosis , 2002, Diabetic medicine : a journal of the British Diabetic Association.

[49]  V. Shur,et al.  Nanoscale Domain Structure in Relaxor PLZT x/65/35 Ceramics , 2006 .

[50]  A. Rescifina,et al.  Recent Developments on Rotaxane-Based Shuttles , 2009 .

[51]  Sergei V. Kalinin,et al.  Controlling polarization dynamics in a liquid environment: from localized to macroscopic switching in ferroelectrics. , 2007, Physical review letters.

[52]  John D Madden,et al.  Mobile Robots: Motor Challenges and Materials Solutions , 2007, Science.

[53]  James M Tour,et al.  Reversible photo-switching of single azobenzene molecules in controlled nanoscale environments. , 2008, Nano letters.

[54]  M. Apuzzo,et al.  Toward the Emergence of Nanoneurosurgery: Part III—Nanomedicine: Targeted Nanotherapy, Nanosurgery, and Progress Toward the Realization of Nanoneurosurgery , 2006, Neurosurgery.

[55]  B. K. Juluri,et al.  A mechanical actuator driven electrochemically by artificial molecular muscles. , 2009, ACS nano.

[56]  Sergei V. Kalinin,et al.  Electromechanics on the Nanometer Scale: Emerging Phenomena, Devices, and Applications , 2009 .

[57]  Paul S Weiss,et al.  Active molecular plasmonics: controlling plasmon resonances with molecular switches. , 2009, Nano letters.

[58]  Gert Cauwenberghs,et al.  Power harvesting and telemetry in CMOS for implanted devices , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[59]  M N Ravi Kumar,et al.  Nano and microparticles as controlled drug delivery devices. , 2000, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[60]  A. Tagantsev,et al.  Piezoelectricity and flexoelectricity in crystalline dielectrics. , 1986, Physical review. B, Condensed matter.

[61]  L. Serpell,et al.  Common core structure of amyloid fibrils by synchrotron X-ray diffraction. , 1997, Journal of molecular biology.

[62]  Christopher M Dobson,et al.  Characterization of the nanoscale properties of individual amyloid fibrils , 2006, Proceedings of the National Academy of Sciences.

[63]  Hans-Jürgen Butt Towards powering nanometer-scale devices with molecular motors: Single molecule engines , 2006 .