I'll take the low road: the evolutionary underpinnings of visually triggered fear

Although there is general agreement that the central nucleus of the amygdala (CeA) is critical for triggering the neuroendocrine response to visual threats, there is uncertainty about the role of subcortical visual pathways in this process. Primates in general appear to depend less on subcortical visual pathways than other mammals. Yet, imaging studies continue to indicate a role for the superior colliculus and pulvinar nucleus in fear activation, despite disconnects in how these brain structures communicate not only with each other but with the amygdala. Studies in fish and amphibians suggest that the neuroendocrine response to visual threats has remained relatively unchanged for hundreds of millions of years, yet there are still significant data gaps with respect to how visual information is relayed to telencephalic areas homologous to the CeA, particularly in fish. In fact ray finned fishes may have evolved an entirely different mechanism for relaying visual information to the telencephalon. In part because they lack a pathway homologous to the lateral geniculate-striate cortex pathway of mammals, amphibians continue to be an excellent model for studying how stress hormones in turn modulate fear activating visual pathways. Glucocorticoids, melanocortin peptides, and CRF all appear to play some role in modulating sensorimotor processing in the optic tectum. These observations, coupled with data showing control of the hypothalamus-pituitary-adrenal axis by the superior colliculus, suggest a fear/stress/anxiety neuroendocrine circuit that begins with first order synapses in subcortical visual pathways. Thus, comparative studies shed light not only on how fear triggering visual pathways came to be, but how hormones released as a result of this activation modulate these pathways.

[1]  L. Pessoa,et al.  Emotion processing and the amygdala: from a 'low road' to 'many roads' of evaluating biological significance , 2010, Nature Reviews Neuroscience.

[2]  G. Lázár Cellular Architecture and Connectivity of the Frog’s Optic Tectum and Pretectum , 1989 .

[3]  J. Ewert Untersuchungen über die Anteile zentralnervöser Aktionen an der taxisspezifischen Ermüdung beim Beutefang der Erdkröte (Bufo bufo L.) , 1967, Zeitschrift für vergleichende Physiologie.

[4]  Joseph E LeDoux Emotion, memory and the brain. , 1994, Scientific American.

[5]  Johann H. Bollmann,et al.  Classification of Object Size in Retinotectal Microcircuits , 2014, Current Biology.

[6]  Silvio Morato,et al.  Measuring anxiety in zebrafish: A critical review , 2010, Behavioural Brain Research.

[7]  E. Narayan,et al.  Sight of a Predator Induces a Corticosterone Stress Response and Generates Fear in an Amphibian , 2013, PloS one.

[8]  Evan J. Kyzar,et al.  Time to recognize zebrafish 'affective' behavior , 2012 .

[9]  L. Isbell,et al.  Rhesus Macaques (Macaca mulatta) Use Posture to Assess Level of Threat From Snakes , 2014 .

[10]  Monique Ernst,et al.  Anxiety, a benefit and detriment to cognition: Behavioral and magnetoencephalographic evidence from a mixed-saccade task , 2012, Brain and Cognition.

[11]  L. F. Toledo,et al.  Is it all death feigning? Case in anurans , 2010 .

[12]  R. Northcutt,et al.  A Pallial Visual Area in the Telencephalon of the Bony Fish Polypterus , 2004, Brain, Behavior and Evolution.

[13]  Murilo S. de Abreu,et al.  Alcohol Impairs Predation Risk Response and Communication in Zebrafish , 2013, PloS one.

[14]  R. Denver,et al.  Distribution and corticosteroid regulation of glucocorticoid receptor in the brain of Xenopus laevis , 2008, The Journal of comparative neurology.

[15]  E. Rolls,et al.  Neurons in the amygdala of the monkey with responses selective for faces , 1985, Behavioural Brain Research.

[16]  Herwig Baier,et al.  A Visual Pathway for Looming-Evoked Escape in Larval Zebrafish , 2015, Current Biology.

[17]  H. Takeda,et al.  Developmental Origin of Diencephalic Sensory Relay Nuclei in Teleosts , 2007, Brain, Behavior and Evolution.

[18]  R. E. Blaser,et al.  Behavioral measures of anxiety in zebrafish (Danio rerio) , 2010, Behavioural Brain Research.

[19]  L. Carruth,et al.  Distribution and subcellular localization of glucocorticoid receptor-immunoreactive neurons in the developing and adult male zebra finch brain. , 2011, General and comparative endocrinology.

[20]  R. Denver,et al.  Ontogeny of corticotropin-releasing factor effects on locomotion and foraging in the Western spadefoot toad (Spea hammondii) , 2004, Hormones and Behavior.

[21]  Iwona Stepniewska,et al.  The Pulvinar Complex , 2003 .

[22]  O. Kah,et al.  Immunohistochemical localization of glucocorticoid receptors in the forebrain of the rainbow trout (Oncorhynchus mykiss) , 1998, The Journal of comparative neurology.

[23]  P. Verbeek,et al.  Variable stress-responsiveness in wild type and domesticated fighting fish , 2008, Physiology & Behavior.

[24]  Xintian Hu,et al.  Processing of visually evoked innate fear by a non-canonical thalamic pathway , 2015, Nature Communications.

[25]  J. A. Carr,et al.  The Effects of Melanocortin Peptides and Corticosterone on Habituation in the Great Plains Toad,Bufo cognatus , 1996, Hormones and Behavior.

[26]  N. Bernier,et al.  Localization of corticotropin‐releasing factor, urotensin I, and CRF‐binding protein gene expression in the brain of the zebrafish, Danio rerio , 2007, The Journal of comparative neurology.

[27]  C. Woodley,et al.  Measuring responses to simulated predation threat using behavioral and physiological metrics: the role of aquatic vegetation , 2003, Oecologia.

[28]  Nikos K. Logothetis,et al.  Facial-Expression and Gaze-Selective Responses in the Monkey Amygdala , 2007, Current Biology.

[29]  G. Striedter The diencephalon of the channel catfish, Ictalurus punctatus. I. Nuclear organization. , 1990, Brain, behavior and evolution.

[30]  G. Roth,et al.  Organization of the sensory input to the telencephalon in the fire‐bellied toad, Bombina orientalis , 2007, The Journal of comparative neurology.

[31]  Sachit Butail,et al.  Live predators, robots, and computer-animated images elicit differential avoidance responses in zebrafish. , 2015, Zebrafish.

[32]  R. Northcutt Connections of the lateral and medial divisions of the goldfish telencephalic pallium , 2006, The Journal of comparative neurology.

[33]  D. Ingle,et al.  Two Visual Systems in the Frog , 1973, Science.

[34]  G. Rettig Connections of the tectum opticum in two urodeles, Salamandra salamandra and Bolitoglossa subpalmata, with special reference to the nucleus isthmi. , 1988, Journal fur Hirnforschung.

[35]  T. Ono,et al.  Superior colliculus lesions impair threat responsiveness in infant capuchin monkeys , 2011, Neuroscience Letters.

[36]  Qian Wang,et al.  A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice , 2015, Science.

[37]  P. Luiten Afferent and efferent connections of the optic tectum in the carp (Cyprinus carpio L.) , 1981, Brain Research.

[38]  A. Mikami,et al.  Activity of single neurons in the monkey amygdala during performance of a visual discrimination task. , 1992, Journal of neurophysiology.

[39]  J. Ewert Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute- und Fluchtverhalten der Erdkröte (Bufo bufo L.) , 1968, Zeitschrift für vergleichende Physiologie.

[40]  R. Gerlai,et al.  Animated bird silhouette above the tank: Acute alcohol diminishes fear responses in zebrafish , 2012, Behavioural Brain Research.

[41]  R. Wessel,et al.  Electrophysiological properties of isthmic neurons in frogs revealed by in vitro and in vivo studies , 2010, Journal of Comparative Physiology A.

[42]  U. Dicke Morphology, axonal projection pattern, and response types of tectal neurons in plethodontid salamanders. I: Tracer study of projection neurons and their pathways , 1999, The Journal of comparative neurology.

[43]  Katsuki Nakamura,et al.  Responses of single neurons in monkey amygdala to facial and vocal emotions. , 2007, Journal of neurophysiology.

[44]  D. Northmore,et al.  Responses of the teleostean nucleus isthmi to looming objects and other moving stimuli , 2006, Visual Neuroscience.

[45]  R. E. Carpenter,et al.  Learning strategies during fear conditioning , 2009, Neurobiology of Learning and Memory.

[46]  Martin Ingvar,et al.  On the unconscious subcortical origin of human fear , 2007, Physiology & Behavior.

[47]  J. Ewert,et al.  Neuropeptide Y (NPY) or fragment NPY 13–36, but not NPY 18–36, inhibit retinotectal transfer in cane toads Bufo marinus , 1998, Neuroscience Letters.

[48]  P S Goldman-Rakic,et al.  Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey , 1997, The Journal of comparative neurology.

[49]  Eugene Nalivaiko,et al.  Synchronized activation of sympathetic vasomotor, cardiac, and respiratory outputs by neurons in the midbrain colliculi. , 2012, American journal of physiology. Regulatory, integrative and comparative physiology.

[50]  J. A. Carr,et al.  Distribution of Neuronal Melanocortins in the Spadefoot Toad Spea multiplicata and Effects of Stress , 2001, Brain, Behavior and Evolution.

[51]  K. Spyer,et al.  Essential organization of the sympathetic nervous system. , 1993, Bailliere's clinical endocrinology and metabolism.

[52]  G. Roth,et al.  Immunohistological characterization of striatal and amygdalar structures in the telencephalon of the fire-bellied toad bombina orientalis , 2005, Neuroscience.

[53]  R. Northcutt,et al.  A Reinterpretation of the Cytoarchitectonics of the Telencephalon of the Comoran Coelacanth , 2010, Front. Neuroanat..

[54]  L. Barcellos,et al.  Whole-body cortisol increases after direct and visual contact with a predator in zebrafish, Danio rerio , 2007 .

[55]  M. Porfiri,et al.  A Robotics-Based Behavioral Paradigm to Measure Anxiety-Related Responses in Zebrafish , 2013, PloS one.

[56]  K. Nakamura,et al.  Functional differences in face processing between the amygdala and ventrolateral prefrontal cortex in monkeys , 2015, Neuroscience.

[57]  Robert Gerlai,et al.  In search of optimal fear inducing stimuli: Differential behavioral responses to computer animated images in zebrafish , 2012, Behavioural Brain Research.

[58]  G. Roth,et al.  Thalamo‐telencephalic pathways in the fire‐bellied toad Bombina orientalis , 2008, The Journal of comparative neurology.

[59]  J. K. Harting,et al.  Connectional organization of the superior colliculus , 1984, Trends in Neurosciences.

[60]  R. J. Dolan,et al.  Human Amygdala Responses to Fearful Eyes , 2002, NeuroImage.

[61]  A. Hoffmann,et al.  Autonomic adjustments during avoidance and orienting responses induced by electrical stimulation of the central nervous system in toads (Bufo paracnemis) , 2004, Journal of Comparative Physiology B.

[62]  J M Wyss,et al.  Projections from the laterodorsal nucleus of the thalamus to the limbic and visual cortices in the rat , 1992, The Journal of comparative neurology.

[63]  Hironobu Ito,et al.  Visual, lateral line, and auditory ascending pathways to the dorsal telencephalic area through the rostrolateral region of the lateral preglomerular nucleus in cyprinids , 2008, The Journal of comparative neurology.

[64]  J. Ewert,et al.  Neurons of the toad's (Bufo bufo L.) visual system sensitive to moving configurational stimuli: A statistical analysis , 1978, Journal of comparative physiology.

[65]  Silvio Morato,et al.  Parametric analyses of anxiety in zebrafish scototaxis , 2010, Behavioural Brain Research.

[66]  N. Moreno,et al.  The common organization of the amygdaloid complex in tetrapods: New concepts based on developmental, hodological and neurochemical data in anuran amphibians , 2006, Progress in Neurobiology.

[67]  S. C. Sharma,et al.  Visual projection in surgically created ‘compound’ tectum in adult goldfish , 1975, Brain Research.

[68]  S. L. Lima Stress and Decision Making under the Risk of Predation: Recent Developments from Behavioral, Reproductive, and Ecological Perspectives , 1998 .

[69]  D. B. Bender Visual activation of neurons in the primate pulvinar depends on cortex but not colliculus , 1983, Brain Research.

[70]  D. Munoz,et al.  On the importance of the transient visual response in the superior colliculus , 2008, Current Opinion in Neurobiology.

[71]  R. Blaser,et al.  Measures of Anxiety in Zebrafish (Danio rerio): Dissociation of Black/White Preference and Novel Tank Test , 2012, PloS one.

[72]  K. Chung,et al.  Neuropeptide Y (NPY). , 2004, Pulmonary pharmacology & therapeutics.

[73]  A. Simmons,et al.  Development of Tectal Connectivity across Metamorphosis in the Bullfrog (Rana catesbeiana) , 2011, Brain, Behavior and Evolution.

[74]  Jumpei Matsumoto,et al.  Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes , 2013, Proceedings of the National Academy of Sciences.

[75]  F. Hallböök,et al.  Proopiomelanocortin and melanocortin receptors in the adult rat retino-tectal system and their regulation after optic nerve transection. , 2003, European journal of pharmacology.

[76]  M. Fanselow,et al.  Stress-induced enhancement of fear learning: An animal model of posttraumatic stress disorder , 2005, Neuroscience & Biobehavioral Reviews.

[77]  T. Morrison-Scott,et al.  Principles of Animal Taxonomy , 1962, Nature.

[78]  S. Ogawa,et al.  Habenular kisspeptin modulates fear in the zebrafish , 2014, Proceedings of the National Academy of Sciences.

[79]  G. Roth,et al.  Morphology, axonal projection pattern, and responses to optic nerve stimulation of thalamic neurons in the fire‐bellied toad Bombina orientalis , 2003, The Journal of comparative neurology.

[80]  S. Tripathy,et al.  The Organization of CRF Neuronal Pathways in Toads: Evidence that Retinal Afferents Do Not Contribute Significantly to Tectal CRF Content , 2010, Brain, Behavior and Evolution.

[81]  Robert Gerlai,et al.  Effects of animated images of sympatric predators and abstract shapes on fear responses in zebrafish , 2012 .

[82]  J. Pettigrew,et al.  Effect of monocular deprivation on binocular neurones in the owl's visual Wulst , 1976, Nature.

[83]  E. G. Jones,et al.  A projection from the medial pulvinar to the amygdala in primates , 1976, Brain Research.

[84]  G. Schneider,et al.  Contrasting visuomotor functions of tectum and cortex in the golden hamster , 1967, Psychologische Forschung.

[85]  Brian N. Pasley,et al.  Subcortical Discrimination of Unperceived Objects during Binocular Rivalry , 2004, Neuron.

[86]  W. Cresswell Non‐lethal effects of predation in birds , 2008 .

[87]  L. S. Demski In a Fish’s Mind’s Eye: The Visual Pallium of Teleosts , 2003 .

[88]  Joseph P Huston,et al.  The relevance of neuronal substrates of defense in the midbrain tectum to anxiety and stress: empirical and conceptual considerations. , 2003, European journal of pharmacology.

[89]  R. Dolan,et al.  A subcortical pathway to the right amygdala mediating "unseen" fear. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[90]  R. Northcutt,et al.  Afferents to the optic tectum of the leopard frog: An HRP study , 1977, The Journal of comparative neurology.

[91]  S. Higashijima,et al.  The Habenulo-Raphe Serotonergic Circuit Encodes an Aversive Expectation Value Essential for Adaptive Active Avoidance of Danger , 2014, Neuron.

[92]  T. Kozicz,et al.  The origin of tectal NPY immunopositive fibers in the frog , 1994, Brain Research.

[93]  G. Chader,et al.  A glucocorticoid and progesterone receptor in the chick optic tectum , 1975, Journal of neurochemistry.

[94]  R. Northcutt,et al.  Retinal projections in the northern water snake Natrix sipedon sipedon (L.) , 1974, Journal of morphology.

[95]  J. Kaslin,et al.  Subdivisions of the adult zebrafish subpallium by molecular marker analysis , 2012, The Journal of comparative neurology.

[96]  J. Ewert,et al.  Influence of pretectal lesions on tectal responses to visual stimulation in anurans: field potential, single neuron and behavior analyses. , 1996, Acta biologica Hungarica.

[97]  Ernest E Smith,et al.  An intrinsic CRF signaling system within the optic tectum. , 2013, General and comparative endocrinology.

[98]  S. Nagumo,et al.  Japanese monkeys (Macaca fuscata) spontaneously associate alarm calls with snakes appearing in the left visual field. , 2014, Journal of comparative psychology.

[99]  Joseph E LeDoux Emotion circuits in the brain. , 2009, Annual review of neuroscience.

[100]  L. Gargaglioni,et al.  Basal midbrain modulation of tonic immobility in the toad Bufo paracnemis , 2001, Physiology & Behavior.

[101]  Patricia I. M. Silva,et al.  Stress and fear responses in the teleost pallium , 2015, Physiology & Behavior.

[102]  M. P. Abrams,et al.  Human tonic immobility: measurement and correlates , 2009, Depression and anxiety.

[103]  J. Ewert The neural basis of visually guided behavior. , 1974, Scientific American.

[104]  M. Tamietto,et al.  Neural bases of the non-conscious perception of emotional signals , 2010, Nature Reviews Neuroscience.

[105]  E. Gruberg,et al.  Combining visual information from the two eyes: The relationship between isthmotectal cells that project to ipsilateral and to contralateral optic tectum using fluorescent retrograde labels in the frog, Rana pipiens , 2007, The Journal of comparative neurology.

[106]  R. Dampney,et al.  Role of dorsolateral periaqueductal grey in the coordinated regulation of cardiovascular and respiratory function , 2013, Autonomic Neuroscience.

[107]  Rui Ma,et al.  Influencing and Interpreting Visual Input: The Role of a Visual Feedback System , 2006, The Journal of Neuroscience.

[108]  R. Northcutt Forebrain evolution in bony fishes , 2008, Brain Research Bulletin.

[109]  Robert Gerlai,et al.  Zebrafish (Danio rerio) responds differentially to stimulus fish: The effects of sympatric and allopatric predators and harmless fish , 2008, Behavioural Brain Research.

[110]  R. Northcutt,et al.  BRAIN AND NERVOUS SYSTEM | Functional Morphology of the Brains of Sarcopterygian Fishes: Lungfishes and Latimeria , 2011 .

[111]  Paul A. Frewen,et al.  Effect of direct eye contact in women with PTSD related to interpersonal trauma: Psychophysiological interaction analysis of connectivity of an innate alarm system , 2015, Psychiatry Research: Neuroimaging.

[112]  R. Northcutt,et al.  Afferents to the optic tectum of the leopard frog: An HRP study , 1977, The Journal of comparative neurology.

[113]  R. Lent The organization of subcortical projections of the hamster's visual cortex , 1982, The Journal of comparative neurology.

[114]  T. Mueller What is the Thalamus in Zebrafish? , 2012, Front. Neurosci..

[115]  E. Werner,et al.  Ecological Consequences of the Trade-Off between Growth and Mortality Rates Mediated by Foraging Activity , 1993, The American Naturalist.

[116]  Sylvain Houle,et al.  Neuroanatomic correlates of CCK-4-induced panic attacks in healthy humans: a comparison of two time points , 1999, Biological Psychiatry.

[117]  Harvey J. Karten,et al.  THE ORGANIZATION OF THE AVIAN TELENCEPHALON AND SOME SPECULATIONS ON THE PHYLOGENY OF THE AMNIOTE TELENCEPHALON * , 1969 .

[118]  J. Kaas,et al.  Parameters affecting the loss of ganglion cells of the retina following ablations of striate cortex in primates , 1989, Visual Neuroscience.

[119]  J. A. Carr,et al.  Neuropeptides and amphibian prey-catching behavior. , 2002, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[120]  D. Perrett,et al.  A differential neural response in the human amygdala to fearful and happy facial expressions , 1996, Nature.

[121]  C. Maximino,et al.  “Limbic associative” and “autonomic” amygdala in teleosts: A review of the evidence , 2013, Journal of Chemical Neuroanatomy.

[122]  T. Ono,et al.  A role for the superior colliculus in the modulation of threat responsiveness in primates: toward the ontogenesis of the social brain , 2012, Reviews in the neurosciences.

[123]  H. Steinbusch,et al.  Increased plasma corticosterone levels after periaqueductal gray stimulation-induced escape reaction or panic attacks in rats , 2011, Behavioural Brain Research.

[124]  Evian Gordon,et al.  A Direct Brainstem–amygdala–cortical Dalarmt System for Subliminal Signals of Fear , 2004 .

[125]  J. Ewert,et al.  Effect of neuropeptide-Y on tectal field potentials in the toad , 1995, Brain Research.

[126]  J. Ewert,et al.  Neuropeptide Y suppresses glucose utilization in the dorsal optic tectum towards visual stimulation in the toad Bombina orientalis: A [14C]2DG study , 2006, Neuroscience Letters.

[127]  R. Bonett,et al.  Stressor and glucocorticoid-dependent induction of the immediate early gene kruppel-like factor 9: implications for neural development and plasticity. , 2009, Endocrinology.

[128]  K. Grieve,et al.  The primate pulvinar nuclei: vision and action , 2000, Trends in Neurosciences.

[129]  G. Striedter The diencephalon of the channel catfish, Ictalurus punctatus. II. Retinal, tectal, cerebellar and telencephalic connections. , 1990, Brain, behavior and evolution.

[130]  George Gaylord Simpson,et al.  Principles of Animal Taxonomy , 1961 .

[131]  C. Maximino,et al.  A comparison of the light/dark and novel tank tests in zebrafish , 2012 .

[132]  Katsuki Nakamura,et al.  Impacts of facial identity and type of emotion on responses of amygdala neurons , 2006, Neuroreport.

[133]  M. C. Ferrari,et al.  The paradox of risk allocation: a review and prospectus , 2009, Animal Behaviour.

[134]  A. Goodchild,et al.  Disinhibition of the midbrain colliculi unmasks coordinated autonomic, respiratory, and somatomotor responses to auditory and visual stimuli. , 2014, American journal of physiology. Regulatory, integrative and comparative physiology.

[135]  A. N. Bowers,et al.  Visual circuits of the avian telencephalon: evolutionary implications , 1999, Behavioural Brain Research.

[136]  H. Johnson,et al.  A comparison of 'traditional' and multimedia information systems development practices , 2003, Inf. Softw. Technol..

[137]  G. Schneider Two visual systems. , 1969, Science.

[138]  J. Pettigrew,et al.  Neurons selective for orientation and binocular disparity in the visual Wulst of the barn owl (Tyto alba). , 1976, Science.

[139]  T. Ono,et al.  Monkey Pulvinar Neurons Fire Differentially to Snake Postures , 2014, PloS one.

[140]  M. Uchiyama,et al.  Inhibitory effect of corticotropin-releasing factor on food intake in the bullfrog, Aquarana catesbeiana , 2011, Peptides.

[141]  J. K. Harting,et al.  The Mammalian Superior Colliculus: Studies of Its Morphology and Connections , 1984 .

[142]  E. Debski,et al.  Neuropeptide Y immunoreactivity of a projection from the lateral thalamic nucleus to the optic tectum of the leopard frog , 1995, Visual Neuroscience.

[143]  J. Meek,et al.  Distribution and quantification of corticotropin‐releasing hormone (CRH) in the brain of the teleost fish Oreochromis mossambicus (tilapia) , 2002, The Journal of comparative neurology.

[144]  Fabrizio Ladu,et al.  Acute caffeine administration affects zebrafish response to a robotic stimulus , 2015, Behavioural Brain Research.

[145]  G. Roth,et al.  Morphology, axonal projection pattern, and responses to optic nerve stimulation of thalamic neurons in the salamander Plethodon jordani , 2000, The Journal of comparative neurology.

[146]  K M Gothard,et al.  Neural responses to facial expression and face identity in the monkey amygdala. , 2007, Journal of neurophysiology.

[147]  Agustín González,et al.  Evolution of the amygdaloid complex in vertebrates, with special reference to the anamnio‐amniotic transition , 2007, Journal of anatomy.

[148]  S. Jesuthasan,et al.  Fear, anxiety, and control in the zebrafish , 2012, Developmental neurobiology.

[149]  N. Moreno,et al.  Central amygdala in anuran amphibians: Neurochemical organization and connectivity , 2005, The Journal of comparative neurology.

[150]  Jrg-Peter Ewert Untersuchungen ber die Anteile zentralnervser Aktionen an der taxisspezifischen Ermdung beim Beutefang der Erdkrte (Bufo bufo L.)@@@Investigations on central nervous actions to the taxis-specific fatigue in the prey-catching behaviour of the common toad (Bufo bufo L.) , 1967 .

[151]  R. F. Tavares,et al.  Cardiovascular effects of noradrenaline microinjection into the medial part of the superior colliculus of unanesthetized rats , 2009, Brain Research.

[152]  J. A. Carr,et al.  α-Melanocyte-Stimulating Hormone and Habituation of Prey-Catching Behavior in the Texas Toad, Bufo speciosus , 1999, Hormones and Behavior.

[153]  G. Lázár,et al.  Colocalization of GABA, enkephalin and neuropeptide Y in the tectum of the green frog Rana esculenta , 2001, Peptides.

[154]  J. Eccles The emotional brain. , 1980, Bulletin et memoires de l'Academie royale de medecine de Belgique.

[155]  Hitoshi Okamoto,et al.  Imaging of Neural Ensemble for the Retrieval of a Learned Behavioral Program , 2013, Neuron.

[156]  E. Volchan,et al.  Is there tonic immobility in humans? Biological evidence from victims of traumatic stress , 2011, Biological Psychology.

[157]  H. Bischof,et al.  The organization of the tectofugal pathway in birds: a comparative review , 1993 .

[158]  A. Bruns,et al.  fMRI fingerprint of unconditioned fear-like behavior in rats exposed to trimethylthiazoline , 2012, European Neuropsychopharmacology.

[159]  M. Castelo‐Branco,et al.  The Distinct Role of the Amygdala, Superior Colliculus and Pulvinar in Processing of Central and Peripheral Snakes , 2015, PloS one.

[160]  J. E. Gordon Handbook of clinical and experimental hypnosis , 1967 .

[161]  L. Isbell,et al.  Factors increasing snake detection and perceived threat in captive rhesus macaques (Macaca mulatta) , 2014, American journal of primatology.

[162]  Quan Le Van Neurophysiological study for pulvinar role in rapid detection of snakes in monkeys , 2014 .

[163]  M. Fanselow,et al.  Neurobehavioral perspectives on the distinction between fear and anxiety , 2015, Learning & memory.

[164]  K. Fite,et al.  Organization of ascending projections from the optic tectum and mesencephalic pretectal gray in Rana pipiens , 1991, Visual Neuroscience.

[165]  Joseph E LeDoux,et al.  The influence of stress hormones on fear circuitry. , 2009, Annual review of neuroscience.