Investigation of tunable structural color based on hexagonal boron nitride

[1]  Z. Yin,et al.  Atomic Layer Deposition of Metal Oxides and Chalcogenides for High Performance Transistors , 2022, Advanced science.

[2]  G. Kang,et al.  Demonstration of Hybrid High-Q Hexagonal Boron Nitride Microresonators , 2021, ACS Photonics.

[3]  Junyu Li,et al.  Artificial Structural Colors and Applications , 2021, Innovation.

[4]  D. Tsai,et al.  All-dielectric metasurface for high-performance structural color , 2020, Nature Communications.

[5]  J. Hyun,et al.  Mie Resonant Structural Colors. , 2020, ACS applied materials & interfaces.

[6]  Kyoungsik Yu,et al.  Optical analysis of the refractive index and birefringence of hexagonal boron nitride from the visible to near-infrared. , 2019, Optics letters.

[7]  B. Gil,et al.  Photonics with hexagonal boron nitride , 2019, Nature Reviews Materials.

[8]  Kenji Watanabe,et al.  Broad range thickness identification of hexagonal boron nitride by colors , 2019, Applied Physics Express.

[9]  H. Bechtel,et al.  Phonon Polariton-assisted Infrared Nanoimaging of Local Strain in Hexagonal Boron Nitride. , 2019, Nano letters.

[10]  Lei Zhang,et al.  Lead Halide Perovskite Nanostructures for Dynamic Color Display. , 2018, ACS nano.

[11]  Jianfang Wang,et al.  Advanced Plasmonic Materials for Dynamic Color Display , 2018, Advanced materials.

[12]  Shang Sun,et al.  Real-Time Tunable Colors from Microfluidic Reconfigurable All-Dielectric Metasurfaces. , 2018, ACS nano.

[13]  Jianguo Tian,et al.  Polarization‐Sensitive Structural Colors with Hue‐and‐Saturation Tuning Based on All‐Dielectric Nanopixels , 2018 .

[14]  H. Duan,et al.  Dynamic Color Displays Using Stepwise Cavity Resonators. , 2017, Nano letters.

[15]  Anders Kristensen,et al.  Resonant laser printing of structural colors on high-index dielectric metasurfaces , 2017, Science Advances.

[16]  Dmitri Golberg,et al.  Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. , 2016, Chemical Society reviews.

[17]  T. Pikálek,et al.  Air refractive index measurement using low-coherence interferometry. , 2015, Applied optics.

[18]  Qing Huo Liu,et al.  Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers , 2015 .

[19]  M. Goldflam,et al.  Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. , 2015, Nature nanotechnology.

[20]  A. H. Castro Neto,et al.  Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride , 2014, Science.

[21]  Xiaoliang Ma,et al.  Influence of nanoparticles and graphite foam on the supercooling of acetamide , 2014 .

[22]  Qing Huo Liu,et al.  Manipulating light absorption of graphene using plasmonic nanoparticles. , 2013, Nanoscale.

[23]  P. Smet,et al.  Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review , 2003 .

[24]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[25]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[26]  P. Ciddor Refractive index of air: new equations for the visible and near infrared. , 1996, Applied optics.

[27]  C. Kunz,et al.  Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al 2 O 3 , 1975 .

[28]  H. Philipp Optical Properties of Silicon Nitride , 1973 .