The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts.

[1]  Lingzhou Zhao,et al.  Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. , 2013, Biomaterials.

[2]  Matthias Epple,et al.  Silver as antibacterial agent: ion, nanoparticle, and metal. , 2013, Angewandte Chemie.

[3]  Fumio Watari,et al.  The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo. , 2012, Biomaterials.

[4]  Sungho Jin,et al.  TiO2 nanotubes for bone regeneration. , 2012, Trends in biotechnology.

[5]  K. Neoh,et al.  Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. , 2012, Biomaterials.

[6]  Lingzhou Zhao,et al.  Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation. , 2012, Biomaterials.

[7]  Menghan Ma,et al.  Local delivery of antimicrobial peptides using self-organized TiO2 nanotube arrays for peri-implant infections. , 2012, Journal of biomedical materials research. Part A.

[8]  Hongyi Li,et al.  Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. , 2011, Biomaterials.

[9]  Hongwei Ni,et al.  Antibacterial nano-structured titania coating incorporated with silver nanoparticles. , 2011, Biomaterials.

[10]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[11]  Kyunghee Choi,et al.  Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. , 2010, Toxicology in vitro : an international journal published in association with BIBRA.

[12]  E. Hoek,et al.  A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment , 2010 .

[13]  Sungho Jin,et al.  Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface. , 2009, Acta biomaterialia.

[14]  Lingzhou Zhao,et al.  Antibacterial coatings on titanium implants. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[15]  S. Bauer,et al.  Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. , 2009, Nano letters.

[16]  S. Okabe,et al.  In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. , 2009, Environmental science & technology.

[17]  Tejal A Desai,et al.  The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. , 2009, Biomaterials.

[18]  Qiaoli Ji,et al.  Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA , 2009, Nanotechnology.

[19]  Sungho Jin,et al.  Stem cell fate dictated solely by altered nanotube dimension , 2009, Proceedings of the National Academy of Sciences.

[20]  R. Civitelli Cell-cell communication in the osteoblast/osteocyte lineage. , 2008, Archives of biochemistry and biophysics.

[21]  Sungho Jin,et al.  Enhanced cellular mobility guided by TiO2 nanotube surfaces. , 2008, Nano letters.

[22]  Y. Park,et al.  Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli , 2008, Applied and Environmental Microbiology.

[23]  X. Chen,et al.  Nanosilver: a nanoproduct in medical application. , 2008, Toxicology letters.

[24]  Tejal A Desai,et al.  Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. , 2007, Biomaterials.

[25]  Tejal A Desai,et al.  Influence of engineered titania nanotubular surfaces on bone cells. , 2007, Biomaterials.

[26]  Philippe Knauth,et al.  Fabrication of self-organized TiO2 nanotubes from columnar titanium thin films sputtered on semiconductor surfaces , 2006 .

[27]  M. Schoenfisch,et al.  Reducing Implant-Related Infections: Active Release Strategies , 2006 .

[28]  S. Silver,et al.  Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds , 2006, Journal of Industrial Microbiology and Biotechnology.

[29]  Helmut Münstedt,et al.  Polyamide/silver antimicrobials: effect of filler types on the silver ion release. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[30]  Keita Hara,et al.  Bactericidal Actions of a Silver Ion Solution on Escherichia coli, Studied by Energy-Filtering Transmission Electron Microscopy and Proteomic Analysis , 2005, Applied and Environmental Microbiology.

[31]  J. Stains,et al.  Cell-cell interactions in regulating osteogenesis and osteoblast function. , 2005, Birth defects research. Part C, Embryo today : reviews.

[32]  James R. Anderson,et al.  Effect of silver-coated urinary catheters: efficacy, cost-effectiveness, and antimicrobial resistance. , 2004, American journal of infection control.

[33]  M. Strathmann,et al.  Use of an oxonol dye in combination with confocal laser scanning microscopy to monitor damage to Staphylococcus aureus cells during colonisation of silver-coated vascular grafts. , 2004, International journal of antimicrobial agents.

[34]  Michael Wagener,et al.  An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. , 2004, Biomaterials.

[35]  I. Sondi,et al.  Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. , 2004, Journal of colloid and interface science.

[36]  Christopher S. Chen,et al.  Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. , 2004, Developmental cell.

[37]  R. Darouiche,et al.  Treatment of infections associated with surgical implants. , 2004, The New England journal of medicine.

[38]  J. Guggenbichler,et al.  Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. , 2004, International journal of antimicrobial agents.

[39]  K. Klabunde,et al.  Metal Oxide Nanoparticles as Bactericidal Agents , 2002 .

[40]  A. Massè,et al.  Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. , 2002, Biomaterials.

[41]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[42]  F. Cui,et al.  A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. , 2000, Journal of biomedical materials research.

[43]  H. Klasen,et al.  A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. , 2000, Burns : journal of the International Society for Burn Injuries.

[44]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[45]  J. Musil,et al.  Magnetron sputtering of alloy and alloy-based films , 1999 .

[46]  P. Kelly,et al.  Recent advances in magnetron sputtering , 1999 .

[47]  C. Isalberti,et al.  Adhesion of bacteria to stainless steel and silver-coated orthopedic external fixation pins. , 1997, Journal of biomedical materials research.

[48]  A. Gristina,et al.  Biomaterial-centered infection: microbial adhesion versus tissue integration. , 1987, Science.

[49]  D. K. Owens,et al.  Estimation of the surface free energy of polymers , 1969 .

[50]  Lingzhou Zhao,et al.  The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. , 2013, Biomaterials.

[51]  Cato T. Laurencin,et al.  Nanostructured Scaffolds for Bone Tissue Engineering , 2011 .

[52]  M Epple,et al.  Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. , 2011, Acta biomaterialia.

[53]  Ke Karlovu,et al.  The bactericidal effect of silver nanoparticles , 2010 .