Gas storage in porous metal-organic frameworks for clean energy applications.

Depletion of fossil oil deposits and the escalating threat of global warming have put clean energy research, which includes the search for clean energy carriers such as hydrogen and methane as well as the reduction of carbon dioxide emissions, on the urgent agenda. A significant technical challenge has been recognized as the development of a viable method to efficiently trap hydrogen, methane and carbon dioxide gas molecules in a confined space for various applications. This issue can be addressed by employing highly porous materials as storage media, and porous metal-organic frameworks (MOFs) which have exceptionally high surface areas as well as chemically-tunable structures are playing an unusual role in this respect. In this feature article we provide an overview of the current status of clean energy applications of porous MOFs, including hydrogen storage, methane storage and carbon dioxide capture.

[1]  S. Kitagawa,et al.  Three‐Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4, 4′‐bpy)3(NO3)4]·xH2O}n (M Co, Ni, Zn) , 1997 .

[2]  C. D. Collier,et al.  Further investigation of the effect of framework catenation on hydrogen uptake in metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[3]  M. O'Keeffe Design of MOFs and intellectual content in reticular chemistry: a personal view. , 2009, Chemical Society reviews.

[4]  W. Mori,et al.  Syntheses and Characterization of Microporous Coordination Polymers with Open Frameworks , 2002 .

[5]  A. Matzger,et al.  Porous crystal derived from a tricarboxylate linker with two distinct binding motifs. , 2007, Journal of the American Chemical Society.

[6]  G. McIntyre,et al.  Determination of the hydrogen absorption sites in Zn4O(1,4-benzenedicarboxylate) by single crystal neutron diffraction. , 2006, Chemical communications.

[7]  K. Thomas,et al.  Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. , 2009, Dalton transactions.

[8]  E. Kang,et al.  Structure, Hydrogen Storage, and Luminescence Properties of Three 3D Metal−Organic Frameworks with NbO and PtS Topologies , 2008 .

[9]  Vanessa K. Peterson,et al.  Inelastic neutron scattering of H2 adsorbed in HKUST-1 , 2007 .

[10]  Young Eun Cheon,et al.  A comparison of the H2 sorption capacities of isostructural metal-organic frameworks with and without accessible metal sites: [{Zn2(abtc)(dmf)2}3] and [{Cu2(abtc)(dmf)2}3] versus [{Cu2(abtc)}3]. , 2008, Angewandte Chemie.

[11]  Omar M Yaghi,et al.  The pervasive chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[12]  Susumu Kitagawa,et al.  Chemistry of coordination space of porous coordination polymers , 2007 .

[13]  Jeff Johnson,et al.  PUTTING A LID ON CARBON DIOXIDE , 2004 .

[14]  S. Kitagawa,et al.  Pore surface engineering of microporous coordination polymers. , 2006, Chemical communications.

[15]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[16]  C. D. Collier,et al.  Design and Construction of Metal–Organic Frameworks for Hydrogen Storage and Selective Gas Adsorption , 2009 .

[17]  S. Kitagawa,et al.  Rational Synthesis of Stable Channel‐Like Cavities with Methane Gas Adsorption Properties: [{Cu2(pzdc)2(L)}n] (pzdc=pyrazine‐2,3‐dicarboxylate; L=a Pillar Ligand) , 1999 .

[18]  Xiang Lin,et al.  Exceptionally high H2 storage by a metal-organic polyhedral framework. , 2009, Chemical communications.

[19]  K. Thomas,et al.  Hydrogen adsorption and storage on porous materials , 2007 .

[20]  J. Simmons,et al.  A nanotubular metal-organic framework with permanent porosity: structure analysis and gas sorption studies. , 2009, Chemical communications.

[21]  Wenbin Lin,et al.  Highly interpenetrated metal-organic frameworks for hydrogen storage. , 2004, Angewandte Chemie.

[22]  S. Kaskel,et al.  Structural transformation and high pressure methane adsorption of Co2(1,4-bdc)2dabco , 2008 .

[23]  Mitsuru Kondo,et al.  A New, Methane Adsorbent, Porous Coordination Polymer [{CuSiF6(4,4′-bipyridine)2}n] , 2000 .

[24]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[25]  Omar M Yaghi,et al.  Characterization of H2 binding sites in prototypical metal-organic frameworks by inelastic neutron scattering. , 2005, Journal of the American Chemical Society.

[26]  A. J. Blake,et al.  Twelve-connected porous metal-organic frameworks with high H(2) adsorption. , 2007, Chemical communications.

[27]  M. Kurmoo Magnetic metal-organic frameworks. , 2009, Chemical Society reviews.

[28]  Randall Q. Snurr,et al.  Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification , 2009 .

[29]  T. Yildirim,et al.  Metal−Organic Frameworks Based on Double-Bond-Coupled Di-Isophthalate Linkers with High Hydrogen and Methane Uptakes , 2008 .

[30]  T. Yildirim,et al.  Direct observation of hydrogen adsorption sites and nanocage formation in metal-organic frameworks. , 2005, Physical review letters.

[31]  J. Simmons,et al.  Porous metal-organic frameworks based on an anthracene derivative: syntheses, structure analysis, and hydrogen sorption studies. , 2009, Inorganic chemistry.

[32]  C. Serre,et al.  High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[33]  Gérard Férey,et al.  Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. , 2006, Angewandte Chemie.

[34]  T. Yildirim,et al.  Hydrogen and Methane Adsorption in Metal−Organic Frameworks: A High-Pressure Volumetric Study , 2007 .

[35]  V. Isaeva,et al.  Metal-organic frameworks—New materials for hydrogen storage , 2007 .

[36]  Lev Sarkisov,et al.  Design of new materials for methane storage. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[37]  C. D. Collier,et al.  Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. , 2008, Journal of the American Chemical Society.

[38]  Jong‐San Chang,et al.  A metal-organic framework based on an unprecedented nonanuclear cluster as a secondary building unit: structure and gas sorption behavior. , 2009, Chemical communications.

[39]  C. Serre,et al.  Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. , 2005, Journal of the American Chemical Society.

[40]  Craig M. Brown,et al.  Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. , 2006, Journal of the American Chemical Society.

[41]  S. Kaskel,et al.  High pressure methane adsorption in the metal-organic frameworks Cu3(btc)2, Zn2(bdc)2dabco, and Cr3F(H2O)2O(bdc)3 , 2008 .

[42]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[43]  A. J. Blake,et al.  Enhancement of H2 adsorption in coordination framework materials by use of ligand curvature. , 2009, Chemistry.

[44]  M. Hirscher,et al.  Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. , 2006, Chemical communications.

[45]  P. Wheatley,et al.  Gas storage in nanoporous materials. , 2008, Angewandte Chemie.

[46]  A. J. Blake,et al.  High H2 adsorption by coordination-framework materials. , 2006, Angewandte Chemie.

[47]  Michael A. Miller,et al.  Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks , 2007 .

[48]  J. Long,et al.  Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. , 2008, Angewandte Chemie.

[49]  Hong‐Cai Zhou,et al.  Hydrogen storage in metal–organic frameworks , 2007 .

[50]  Xiaoping Wang,et al.  Fluorous metal-organic frameworks for high-density gas adsorption. , 2007, Journal of the American Chemical Society.

[51]  Jun Chen,et al.  A heterometallic porous material for hydrogen adsorption. , 2007, Inorganic chemistry.

[52]  Mircea Dincă,et al.  Observation of Cu2+-H2 interactions in a fully desolvated sodalite-type metal-organic framework. , 2007, Angewandte Chemie.

[53]  S. Qiu,et al.  New prototype isoreticular metal-organic framework Zn(4)O(FMA)(3) for gas storage. , 2009, Inorganic Chemistry.

[54]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[55]  Wei Zhou,et al.  High-capacity methane storage in metal-organic frameworks M2(dhtp): the important role of open metal sites. , 2009, Journal of the American Chemical Society.

[56]  D. D’Alessandro,et al.  Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. , 2009, Journal of the American Chemical Society.

[57]  C. D. Collier,et al.  Ultramicroporous metal-organic framework based on 9,10-anthracenedicarboxylate for selective gas adsorption. , 2007, Inorganic chemistry.

[58]  A. Cheetham,et al.  Adsorption of molecular hydrogen on coordinatively unsaturated Ni(II) sites in a nanoporous hybrid material. , 2006, Journal of the American Chemical Society.

[59]  K. Seki Design of an adsorbent with an ideal pore structure for methane adsorption using metal complexes , 2001 .

[60]  Ulrich Müller,et al.  Hydrogen Adsorption in Metal–Organic Frameworks: Cu‐MOFs and Zn‐MOFs Compared , 2006 .

[61]  A. Dailly,et al.  Saturation of hydrogen sorption in Zn benzenedicarboxylate and Zn naphthalenedicarboxylate. , 2006, The journal of physical chemistry. B.

[62]  J. Long,et al.  Expanded sodalite-type metal-organic frameworks: increased stability and H(2) adsorption through ligand-directed catenation. , 2008, Inorganic chemistry.

[63]  Banglin Chen,et al.  Hydrogen adsorption in an interpenetrated dynamic metal-organic framework. , 2006, Inorganic chemistry.

[64]  Omar M Yaghi,et al.  Exceptional H2 saturation uptake in microporous metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[65]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[66]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[67]  Yun Liu,et al.  Increasing the density of adsorbed hydrogen with coordinatively unsaturated metal centers in metal-organic frameworks. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[68]  M. Allendorf,et al.  Luminescent metal-organic frameworks. , 2009, Chemical Society reviews.

[69]  Takato,et al.  Hydrogen Adsorption Properties of Lantern-Type Dinuclear M(BDC)(DABCO)1⁄2 , 2008 .

[70]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[71]  A. Matzger,et al.  A porous coordination copolymer with over 5000 m2/g BET surface area. , 2009, Journal of the American Chemical Society.

[72]  Michael O'Keeffe,et al.  A route to high surface area, porosity and inclusion of large molecules in crystals , 2004, Nature.

[73]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[74]  Mitsuru Kondo,et al.  Microporous materials constructed from the interpenetrated coordination networks. Structures and methane adsorption properties , 2000 .

[75]  Michael O'Keeffe,et al.  Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[76]  Sang Soo Han,et al.  Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks. , 2009, Chemical Society reviews.

[77]  S. Bhatia,et al.  Optimum conditions for adsorptive storage. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[78]  Mark E. Davis Ordered porous materials for emerging applications , 2002, Nature.

[79]  Daqiang Yuan,et al.  A large-surface-area boracite-network-topology porous MOF constructed from a conjugated ligand exhibiting a high hydrogen uptake capacity. , 2009, Inorganic chemistry.

[80]  M. P. Suh,et al.  Mixed-ligand metal-organic frameworks with large pores: gas sorption properties and single-crystal-to-single-crystal transformation on guest exchange. , 2008, Chemistry.

[81]  Hong‐Cai Zhou,et al.  Investigation of gas adsorption performances and H2 affinities of porous metal-organic frameworks with different entatic metal centers. , 2009, Inorganic chemistry.

[82]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[83]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[84]  N. Champness,et al.  Hydrogen storage in metal–organic frameworks , 2007 .

[85]  Zou Yong,et al.  Adsorption of carbon dioxide at high temperature—a review , 2002 .

[86]  Leonard R. MacGillivray,et al.  Metal-organic frameworks : design and application , 2010 .

[87]  Kimoon Kim,et al.  Methane sorption and structural characterization of the sorption sites in Zn2(bdc)2(dabco) by single crystal X-ray crystallography. , 2009, Chemistry, an Asian journal.

[88]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[89]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[90]  Mircea Dincă,et al.  Broadly hysteretic H2 adsorption in the microporous metal-organic framework Co(1,4-benzenedipyrazolate). , 2008, Journal of the American Chemical Society.

[91]  Alexander J. Blake,et al.  High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. , 2009, Journal of the American Chemical Society.

[92]  Wei Zhou,et al.  Enhanced H2 adsorption in isostructural metal-organic frameworks with open metal sites: strong dependence of the binding strength on metal ions. , 2008, Journal of the American Chemical Society.

[93]  Hong-Cai Zhou,et al.  A metal-organic framework with entatic metal centers exhibiting high gas adsorption affinity. , 2006, Journal of the American Chemical Society.

[94]  J. Johnson,et al.  Microporous metal organic materials: promising candidates as sorbents for hydrogen storage. , 2004, Journal of the American Chemical Society.

[95]  A. J. Blake,et al.  A biporous coordination framework with high H2 storage density. , 2008, Chemical communications.

[96]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[97]  C. Serre,et al.  Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M = Al3+, Cr3+), MIL-53. , 2003, Chemical communications.

[98]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[99]  T. Yildirim,et al.  Methane Sorption in Nanoporous Metal−Organic Frameworks and First-Order Phase Transition of Confined Methane , 2009 .

[100]  Young Eun Cheon,et al.  Syntheses and functions of porous metallosupramolecular networks , 2008 .

[101]  David Dubbeldam,et al.  Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[102]  Dan Zhao,et al.  The current status of hydrogen storage in metal–organic frameworks , 2008 .

[103]  R. T. Yang,et al.  Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover. , 2006, Journal of the American Chemical Society.

[104]  S. Qiu,et al.  Mesoporous metal-organic framework with rare etb topology for hydrogen storage and dye assembly. , 2007, Angewandte Chemie.

[105]  Craig M. Brown,et al.  Neutron powder diffraction study of D2 sorption in Cu3(1,3,5-benzenetricarboxylate)2. , 2006, Journal of the American Chemical Society.