Parallel Implementation of Modeling of Fractional-Order State-Space Systems Using the Fixed-Step Euler Method

This paper presents new results in implementation of parallel computing in modeling of fractional-order state-space systems. The methods considered in the paper are based on the Euler fixed-step discretization scheme and the Grünwald-Letnikov definition of the fractional-order derivative. Two different parallelization approaches for modeling of fractional-order state-space systems are proposed, which are implemented both in Central Processing Unit (CPU)- and Graphical Processing Unit (GPU)-based hardware environments. Simulation examples show high efficiency of the introduced parallelization schemes. Execution times of the introduced methodology are significantly lower than for the classical, commonly used simulation environment.

[1]  Yonghong Song,et al.  Design and implementation of a compiler framework for helper threading on multi-core processors , 2005, 14th International Conference on Parallel Architectures and Compilation Techniques (PACT'05).

[2]  Waldemar Bauer,et al.  Application of reduced models of non-integer order integrator to the realization of PIλD controller , 2016, 2016 39th International Conference on Telecommunications and Signal Processing (TSP).

[3]  Krzysztof J. Latawiec,et al.  Normalized finite fractional differences: Computational and accuracy breakthroughs , 2012, Int. J. Appl. Math. Comput. Sci..

[4]  Masaki Nakagawa,et al.  A Direct Link between Rényi–Tsallis Entropy and Hölder’s Inequality—Yet Another Proof of Rényi–Tsallis Entropy Maximization , 2019, Entropy.

[5]  M. Łukaniszyn,et al.  A Comparative Analysis of Laguerre-Based Approximators to the Grünwald-Letnikov Fractional-Order Difference , 2015 .

[6]  Ji-Huan He,et al.  Fractal calculus and its geometrical explanation , 2018, Results in Physics.

[7]  C. J. Zúñiga-Aguilar,et al.  Solving fractional differential equations of variable-order involving operators with Mittag-Leffler kernel using artificial neural networks , 2017 .

[8]  D. M. Hutton,et al.  The Art of Multiprocessor Programming , 2008 .

[9]  Jafar Biazar,et al.  The Fractional Differential Model of HIV-1 Infection of CD4+ T-Cells with Description of the Effect of Antiviral Drug Treatment , 2019, Comput. Math. Methods Medicine.

[10]  Krzysztof Oprzedkiewicz,et al.  A Memory–Efficient Noninteger–Order Discrete–Time State–Space Model of a Heat Transfer Process , 2018, Int. J. Appl. Math. Comput. Sci..

[11]  Krzysztof J. Latawiec,et al.  Fractional-order modeling of electric circuits: modern empiricism vs. classical science , 2017, 2017 Progress in Applied Electrical Engineering (PAEE).

[12]  David A. Koufaty,et al.  Hyperthreading Technology in the Netburst Microarchitecture , 2003, IEEE Micro.

[13]  Sanyang Liu,et al.  He’s fractional derivative and its application for fractional Fornberg-Whitham equation , 2017 .

[14]  Kai Diethelm,et al.  An efficient parallel algorithm for the numerical solution of fractional differential equations , 2011 .

[15]  H. Baghani,et al.  A New Gronwall–Bellman Inequality in Frame of Generalized Proportional Fractional Derivative , 2019, Mathematics.

[16]  Cosmin Bonchis,et al.  HPC optimal parallel communication algorithm for the simulation of fractional-order systems , 2018, The Journal of Supercomputing.

[17]  Tadeusz Kaczorek,et al.  Singular fractional linear systems and electrical circuits , 2011, Int. J. Appl. Math. Comput. Sci..

[18]  Krzysztof J. Latawiec,et al.  Modeling of discrete-time fractional-order state space systems using the balanced truncation method , 2017, J. Frankl. Inst..

[19]  Rui A. C. Ferreira,et al.  An Entropy Formulation Based on the Generalized Liouville Fractional Derivative , 2019, Entropy.

[20]  Guitao Fu,et al.  An efficient parallel algorithm for Caputo fractional reaction-diffusion equation with implicit finite-difference method , 2016 .

[21]  Ali Karci,et al.  Fractional order entropy: New perspectives , 2016 .

[22]  M. Ubriaco,et al.  Entropies based on fractional calculus , 2009, 0902.2726.

[23]  Jianfei Huang,et al.  The Grünwald-Letnikov method for fractional differential equations , 2011, Comput. Math. Appl..

[24]  C. J. Zúñiga-Aguilar,et al.  New numerical approximation for solving fractional delay differential equations of variable order using artificial neural networks , 2018 .

[25]  Tadeusz Kaczorek,et al.  Practical stability of positive fractional discrete-time linear systems , 2008 .

[26]  Abdon Atangana,et al.  Dynamics of Ebola Disease in the Framework of Different Fractional Derivatives , 2019, Entropy.

[27]  Abdul-Qayyum M. Khaliq,et al.  Parallel algorithms for nonlinear time–space fractional parabolic PDEs , 2018, Journal of Computational Physics.

[28]  David Kaeli,et al.  Introduction to Parallel Programming , 2013 .

[29]  Maslina Darus,et al.  Analytic Study of Complex Fractional Tsallis’ Entropy with Applications in CNNs , 2018, Entropy.

[30]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[31]  R F Escobar-Jiménez,et al.  Fitting of experimental data using a fractional Kalman-like observer. , 2019, ISA transactions.

[32]  Marek Rydel,et al.  Selection of reduction parameters for complex plant MIMO LTI models using the evolutionary algorithm , 2017, Math. Comput. Simul..

[33]  A short review on analytical methods for fractional equations with he’s fractional derivative , 2017 .