Spectral Approximation of Partial Differential Equations in Highly Distorted Domains
暂无分享,去创建一个
[1] P. Fischer,et al. High-Order Methods for Incompressible Fluid Flow , 2002 .
[2] Abedallah Rababah. High order approximation method for curves , 1995, Comput. Aided Geom. Des..
[3] Joel Ferziger,et al. Higher Order Methods for Incompressible Fluid Flow: by Deville, Fischer and Mund, Cambridge University Press, 499 pp. , 2003 .
[4] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .
[5] T. A. Zang,et al. Spectral Methods: Fundamentals in Single Domains , 2010 .
[6] G. Karniadakis,et al. Spectral/hp Element Methods for CFD , 1999 .
[7] Claudio Canuto,et al. Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .
[8] Lloyd N. Trefethen,et al. Barycentric Lagrange Interpolation , 2004, SIAM Rev..
[9] B. O'neill. Elementary Differential Geometry , 1966 .
[10] Wendelin L. F. Degen. Geometric Hermite Interpolation - : In memoriam Josef Hoschek , 2005, Comput. Aided Geom. Des..
[11] W. J. Gordon,et al. Construction of curvilinear co-ordinate systems and applications to mesh generation , 1973 .
[12] Knut Mørken,et al. A general framework for high-accuracy parametric interpolation , 1997, Math. Comput..
[13] J. Hesthaven,et al. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .
[14] K. Höllig,et al. Geometric Hermite interpolation , 1995 .
[15] Graham F. Carey,et al. GRADING FUNCTIONS AND MESH REDISTRIBUTION , 1985 .