Using Hurst and Lyapunov Exponent For Hyperspectral Image Feature Extraction

Hyperspectral image processing has attracted high attention in remote sensing fields. One of the main issues is to develop efficient methods for dimensionality reduction via feature extraction. This letter proposes a new nonlinear unsupervised feature extraction algorithm using Hurst and Lyapunov exponents to reveal local and general spectral profiles, respectively. A hyperspectral reflectance curve from each pixel is regarded as a time series, and it is represented by Hurst and Lyapunov exponents. These two new features are then used to overcome the Hughes problem for reliable classification. Experimental results show that the proposed method performs better than a few other feature extraction methods tested.

[1]  Bor-Chen Kuo,et al.  Hyperspectral Image Classification Using Kernel-based Nonparametric Weighted Feature Extraction , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[2]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[3]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[4]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[5]  E. LeDrew,et al.  Remote sensing of aquatic coastal ecosystem processes , 2006 .

[6]  David A. Landgrebe,et al.  Feature Extraction Based on Decision Boundaries , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  David A. Landgrebe,et al.  MultiSpec: a tool for multispectral--hyperspectral image data analysis , 2002 .

[8]  Alfred Stein,et al.  Abundance Estimation of Spectrally Similar Minerals by Using Derivative Spectra in Simulated Annealing , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[9]  T. Kailath The Divergence and Bhattacharyya Distance Measures in Signal Selection , 1967 .

[10]  John A. Richards,et al.  Using Suitable Neighbors to Augment the Training Set in Hyperspectral Maximum Likelihood Classification , 2008, IEEE Geoscience and Remote Sensing Letters.

[11]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[12]  F. Meer The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery , 2006 .

[13]  Jon Atli Benediktsson,et al.  Kernel Principal Component Analysis for the Classification of Hyperspectral Remote Sensing Data over Urban Areas , 2009, EURASIP J. Adv. Signal Process..

[14]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[15]  F. Meer Analysis of spectral absorption features in hyperspectral imagery , 2004 .

[16]  Farid Melgani,et al.  Gaussian Process Approach to Remote Sensing Image Classification , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[18]  B. Gao NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space , 1996 .

[19]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[20]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[21]  Bo-Cai Gao,et al.  A practical method for simulating AVHRR-consistent NDVI data series using narrow MODIS channels in the 0.5-1.0 μm spectral range , 2000, IEEE Trans. Geosci. Remote. Sens..

[22]  Vitaliy A. Yatsenko,et al.  Validation of Hyperspectral Data Classification Models , 2008 .

[23]  G. Shaw,et al.  Signal processing for hyperspectral image exploitation , 2002, IEEE Signal Process. Mag..

[24]  Robert I. Damper,et al.  A fast separability-based feature-selection method for high-dimensional remotely sensed image classification , 2008, Pattern Recognit..

[25]  Jiang Li,et al.  Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction , 2002, IEEE Trans. Geosci. Remote. Sens..

[26]  Bor-Chen Kuo,et al.  Nonparametric weighted feature extraction for classification , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[27]  W. Marsden I and J , 2012 .

[28]  John A. Richards,et al.  Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[29]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[30]  Ye Zhang,et al.  A Novel Geometry-Based Feature-Selection Technique for Hyperspectral Imagery , 2007, IEEE Geoscience and Remote Sensing Letters.

[31]  Bor-Chen Kuo,et al.  Kernel Nonparametric Weighted Feature Extraction for Hyperspectral Image Classification , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..