Broadband Reflectarray Antenna on a Periodically Perforated Substrate

We propose a broadband single-layer reflectarray antenna constituted of a double-screen metallic grating on a periodically perforated low-cost substrate. The reflection characteristics of this structure are computed with a full-wave computational technique that utilizes the dyadic Green's function evaluated by an equivalent transmission line modeling in the spectral domain. The obtained dyadic Green's function is then used in an integral equation for the induced surface current densities on the metallic gratings. The resulting integral equation is solved by the Galerkin's method of moments with subdomain basis functions. With the help of this semianalytical method, the phase diagram of the reflectarray unit cell is computed. Using the calculated phase diagram, a center-fed reflectarray is designed at a center frequency of 10.5 GHz. To validate the numerical results, the designed reflectarray for the X-band (8.95-12.1 GHz) is fabricated and measured. The measurements on a 270 mm × 270 mm and F/D = 0.95 reflectarray show a maximum gain of 26.57 dBi with a 1-dB gain bandwidth of 29.5% and an efficiency of 41% at 10.5 GHz. It is shown that the fabricated reflectarray exhibits a reduced radar cross-section outside its operating bandwidth.

[1]  J. Shaker,et al.  Investigation of FSS-Backed Reflectarray Using Different Classes of Cell Elements , 2008, IEEE Transactions on Antennas and Propagation.

[2]  Z. Atlasbaf,et al.  Design and Implementation of a Broadband Single-Layer Reflectarray Antenna With Large-Range Linear Phase Elements , 2012, IEEE Antennas and Wireless Propagation Letters.

[3]  J. Huang,et al.  Analysis of a microstrip reflectarray antenna for microspacecraft applications , 1995 .

[4]  M. R. Chaharmir,et al.  Design of Broadband, Single Layer Dual-Band Large Reflectarray Using Multi Open Loop Elements , 2010, IEEE Transactions on Antennas and Propagation.

[5]  Changhua Wan,et al.  Efficient computation of generalized scattering matrix for analyzing multilayered periodic structures , 1995 .

[6]  Fan Yang,et al.  Broadband Reflectarray Antennas Using Double-Layer Subwavelength Patch Elements , 2010, IEEE Antennas and Wireless Propagation Letters.

[7]  J. Shaker,et al.  Loss Reduction in Reflectarray Designs Using Sub-Wavelength Coupled-Resonant Elements , 2012, IEEE Transactions on Antennas and Propagation.

[8]  T. Itoh Spectral Domain Immitance Approach for Dispersion Characteristics of Generalized Printed Transmission Lines , 1980 .

[9]  Zahra Atlasbaf,et al.  Design and Implementation of a Dual-Band Single Layer Reflectarray in X and K Bands , 2014, IEEE Transactions on Antennas and Propagation.

[10]  Herve Legay,et al.  Dual-band Ka/X reflectarray with broadband loop elements , 2010 .

[11]  M. Chaharmir,et al.  Broadband dual-band linear orthogonal polarisation reflectarray , 2009 .

[12]  M. R. Chaharmir,et al.  Broadband reflectarray antenna with double cross loops , 2006 .

[13]  Transmission line formulation for the full-wave analysis of two-dimensional dielectric photonic crystals , 2004 .

[14]  O. Breinbjerg,et al.  An FSS-Backed 20/30 GHz Circularly Polarized Reflectarray for a Shared Aperture L- and Ka-Band Satellite Communication Antenna , 2014, IEEE Transactions on Antennas and Propagation.

[15]  Vincent Fusco,et al.  RCS reduction technique for reflectarray antennas , 2003 .

[16]  S. M. Rytov,et al.  Electromagnetic Properties of a Finely Stratified Medium , 2014 .

[17]  R. Mittra,et al.  Techniques for analyzing frequency selective surfaces-a review , 1988, Proc. IEEE.

[18]  F. Costa,et al.  Closed-Form Analysis of Reflection Losses in Microstrip Reflectarray Antennas , 2012, IEEE Transactions on Antennas and Propagation.

[19]  J. Encinar Design of two-layer printed reflectarrays using patches of variable size , 2001 .