Quantum and classical algorithms for approximate submodular function minimization

Submodular functions are set functions mapping every subset of some ground set of size $n$ into the real numbers and satisfying the diminishing returns property. Submodular minimization is an important field in discrete optimization theory due to its relevance for various branches of mathematics, computer science and economics. The currently fastest strongly polynomial algorithm for exact minimization [LSW15] runs in time $\widetilde{O}(n^3 \cdot \mathrm{EO} + n^4)$ where $\mathrm{EO}$ denotes the cost to evaluate the function on any set. For functions with range $[-1,1]$, the best $\epsilon$-additive approximation algorithm [CLSW17] runs in time $\widetilde{O}(n^{5/3}/\epsilon^{2} \cdot \mathrm{EO})$. In this paper we present a classical and a quantum algorithm for approximate submodular minimization. Our classical result improves on the algorithm of [CLSW17] and runs in time $\widetilde{O}(n^{3/2}/\epsilon^2 \cdot \mathrm{EO})$. Our quantum algorithm is, up to our knowledge, the first attempt to use quantum computing for submodular optimization. The algorithm runs in time $\widetilde{O}(n^{5/4}/\epsilon^{5/2} \cdot \log(1/\epsilon) \cdot \mathrm{EO})$. The main ingredient of the quantum result is a new method for sampling with high probability $T$ independent elements from any discrete probability distribution of support size $n$ in time $O(\sqrt{Tn})$. Previous quantum algorithms for this problem were of complexity $O(T\sqrt{n})$.

[1]  Yin Tat Lee,et al.  Subquadratic submodular function minimization , 2016, STOC.

[2]  H. Narayanan Submodular functions and electrical networks , 1997 .

[3]  Srinivasan Arunachalam,et al.  Optimizing quantum optimization algorithms via faster quantum gradient computation , 2017, SODA.

[4]  Christoph Dürr,et al.  A Quantum Algorithm for Finding the Minimum , 1996, ArXiv.

[5]  Rishabh K. Iyer,et al.  Submodular Optimization with Submodular Cover and Submodular Knapsack Constraints , 2013, NIPS.

[6]  Michael D. Vose,et al.  A Linear Algorithm For Generating Random Numbers With a Given Distribution , 1991, IEEE Trans. Software Eng..

[7]  Philip Wolfe,et al.  Finding the nearest point in A polytope , 1976, Math. Program..

[8]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[9]  Shouvanik Chakrabarti,et al.  Sublinear quantum algorithms for training linear and kernel-based classifiers , 2019, ICML.

[10]  Yin Tat Lee,et al.  A Faster Cutting Plane Method and its Implications for Combinatorial and Convex Optimization , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[11]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[12]  Krysta Marie Svore,et al.  Quantum Speed-Ups for Solving Semidefinite Programs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[13]  D. Berry,et al.  Black-Box Quantum State Preparation without Arithmetic. , 2018, Physical review letters.

[14]  Ronald de Wolf,et al.  Convex optimization using quantum oracles , 2018, Quantum.

[15]  Leonidas J. Guibas,et al.  A dichromatic framework for balanced trees , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[16]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[17]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[18]  A. J. Walker New fast method for generating discrete random numbers with arbitrary frequency distributions , 1974 .

[19]  Kazuyuki Aihara,et al.  Size-constrained Submodular Minimization through Minimum Norm Base , 2011, ICML.

[20]  Francis R. Bach,et al.  Learning with Submodular Functions: A Convex Optimization Perspective , 2011, Found. Trends Mach. Learn..

[21]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[22]  Andreas Krause,et al.  Submodular Dictionary Selection for Sparse Representation , 2010, ICML.

[23]  Paul Bratley,et al.  A guide to simulation , 1983 .

[24]  Hui Lin An Application of the Submodular Principal Partition to Training Data Subset Selection , 2010 .

[25]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[26]  Maurice Queyranne,et al.  Scheduling Unit Jobs with Compatible Release Dates on Parallel Machines with Nonstationary Speeds , 1995, IPCO.

[27]  Linus Schrage,et al.  A guide to simulation , 1983 .

[28]  Sanjeev Arora,et al.  A combinatorial, primal-dual approach to semidefinite programs , 2007, STOC '07.

[29]  Dorit S. Hochbaum,et al.  An efficient algorithm for image segmentation, Markov random fields and related problems , 2001, JACM.

[30]  John C. Duchi Introductory lectures on stochastic optimization , 2018, IAS/Park City Mathematics Series.

[31]  Lov K. Grover,et al.  Synthesis of quantum superpositions by quantum computation , 2000, Physical review letters.

[32]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[33]  Joran van Apeldoorn,et al.  Quantum algorithms for zero-sum games , 2019, 1904.03180.

[34]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[35]  David P. Woodruff,et al.  Sublinear Optimization for Machine Learning , 2010, FOCS.

[36]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[37]  Satoru Fujishige,et al.  Lexicographically Optimal Base of a Polymatroid with Respect to a Weight Vector , 1980, Math. Oper. Res..

[38]  Shouvanik Chakrabarti,et al.  Quantum algorithms and lower bounds for convex optimization , 2018, Quantum.

[39]  András Gilyén,et al.  Improvements in Quantum SDP-Solving with Applications , 2018, ICALP.

[40]  Simone Severini,et al.  Quantum machine learning: a classical perspective , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[41]  Nicholas J. A. Harvey Matchings, matroids and submodular functions , 2008 .

[42]  William H. Cunningham On submodular function minimization , 1985, Comb..

[43]  Brian Axelrod,et al.  Near-optimal Approximate Discrete and Continuous Submodular Function Minimization , 2019, SODA.

[44]  S. Jordan Fast quantum algorithm for numerical gradient estimation. , 2004, Physical review letters.

[45]  Elad Hazan,et al.  Online submodular minimization , 2009, J. Mach. Learn. Res..

[46]  S. Aaronson Read the fine print , 2015, Nature Physics.

[47]  Jeff A. Bilmes,et al.  Online Submodular Minimization for Combinatorial Structures , 2011, ICML.

[48]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..