Moiré heterostructures: highly tunable platforms for quantum simulation and future computing

:

[1]  J. Shan,et al.  Gate-tunable heavy fermions in a moiré Kondo lattice , 2022, Nature.

[2]  Kenji Watanabe,et al.  Giant ferroelectric polarization in a bilayer graphene heterostructure , 2022, Nature Communications.

[3]  Kenji Watanabe,et al.  Tunable quantum criticalities in an isospin extended Hubbard model simulator , 2022, Nature.

[4]  Kenji Watanabe,et al.  Observation of Coexisting Dirac Bands and Moiré Flat Bands in Magic‐Angle Twisted Trilayer Graphene , 2022, Advanced materials.

[5]  F. Xia,et al.  Intelligent infrared sensing enabled by tunable moiré quantum geometry , 2022, Nature.

[6]  J. Shan,et al.  A tunable bilayer Hubbard model in twisted WSe2 , 2022, Nature Nanotechnology.

[7]  Kenji Watanabe,et al.  Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides , 2021, Nature Nanotechnology.

[8]  Kenji Watanabe,et al.  Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2 , 2021, Nature Physics.

[9]  J. Shan,et al.  Dipolar excitonic insulator in a moiré lattice , 2021, Nature Physics.

[10]  S. Haigh,et al.  Interfacial ferroelectricity in marginally twisted 2D semiconductors , 2021, Nature Nanotechnology.

[11]  K. Novoselov,et al.  Out-of-equilibrium criticalities in graphene superlattices , 2021, Science.

[12]  C. N. Lau,et al.  Evidence for Flat Band Dirac Superconductor Originating from Quantum Geometry , 2021, 2112.13401.

[13]  Kenji Watanabe,et al.  Evidence for unconventional superconductivity in twisted bilayer graphene , 2021, Nature.

[14]  Kenji Watanabe,et al.  Imaging two-dimensional generalized Wigner crystals , 2021, Nature.

[15]  J. Shan,et al.  Quantum anomalous Hall effect from intertwined moiré bands , 2021, Nature.

[16]  J. Shan,et al.  Continuous Mott transition in semiconductor moiré superlattices , 2021, Nature.

[17]  A. Millis,et al.  Quantum criticality in twisted transition metal dichalcogenides , 2021, Nature.

[18]  A. Neto,et al.  Tunable van Hove singularities and correlated states in twisted monolayer–bilayer graphene , 2021, Nature Physics.

[19]  T. Taniguchi,et al.  Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene , 2021, Nature Materials.

[20]  P. Kim,et al.  Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene , 2021, Science.

[21]  Kenji Watanabe,et al.  Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene , 2021, Nature.

[22]  A. Georges,et al.  Moiré heterostructures as a condensed-matter quantum simulator , 2020, Nature Physics.

[23]  Kenji Watanabe,et al.  Stacking-engineered ferroelectricity in bilayer boron nitride , 2020, Science.

[24]  T. Taniguchi,et al.  Interfacial ferroelectricity by van der Waals sliding , 2020, Science.

[25]  Kenji Watanabe,et al.  Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene , 2020, Nature Physics.

[26]  Kenji Watanabe,et al.  Nematicity and competing orders in superconducting magic-angle graphene , 2020, Science.

[27]  J. Kong,et al.  Unconventional ferroelectricity in moiré heterostructures , 2020, Nature.

[28]  J. Shan,et al.  Correlated insulating states at fractional fillings of moiré superlattices , 2020, Nature.

[29]  Xiaodong Xu,et al.  Stacking Domain Wall Magnons in Twisted van der Waals Magnets. , 2020, Physical review letters.

[30]  P. Kim,et al.  Tunable spin-polarized correlated states in twisted double bilayer graphene , 2020, Nature.

[31]  Kenji Watanabe,et al.  Correlated electronic phases in twisted bilayer transition metal dichalcogenides , 2020, Nature Materials.

[32]  Kenji Watanabe,et al.  Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene , 2020, Nature.

[33]  L. Balents,et al.  Noncollinear phases in moiré magnets , 2020, Proceedings of the National Academy of Sciences.

[34]  J. Zhu,et al.  Electrical switching of magnetic order in an orbital Chern insulator , 2020, Nature.

[35]  Xiaodong Xu,et al.  Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene , 2020, Nature Physics.

[36]  Kenji Watanabe,et al.  Strongly correlated electrons and hybrid excitons in a moiré heterostructure , 2020, Nature.

[37]  J. Shan,et al.  Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices , 2020, Nature.

[38]  Kenji Watanabe,et al.  Moiré superlattice in a MoSe 2 / hBN / MoSe 2 heterostructure : from coherent coupling of inter-and intra-layer excitons to correlated Mott-like states of electrons , 2019 .

[39]  Kenji Watanabe,et al.  Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices , 2019, Nature.

[40]  J. Zhu,et al.  Intrinsic quantized anomalous Hall effect in a moiré heterostructure , 2019, Science.

[41]  Kenji Watanabe,et al.  Tunable Correlated Chern Insulator and Ferromagnetism in Trilayer Graphene/Boron Nitride Moir\'e Superlattice , 2019 .

[42]  Kenji Watanabe,et al.  Correlated states in twisted double bilayer graphene , 2019, Nature Physics.

[43]  Kenji Watanabe,et al.  Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene , 2019, Nature.

[44]  M. Kastner,et al.  Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene , 2019, Science.

[45]  Feng Wang,et al.  Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice , 2018, Nature Physics.

[46]  J. Shan,et al.  Light–valley interactions in 2D semiconductors , 2018, Nature Photonics.

[47]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[48]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[49]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[50]  L. Landau,et al.  Fermionic quantum computation , 2000 .