1.55  μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks.

InAs/InAlGaAs quantum dot active layers within microcavity resonators offer the potential of ultra-low-threshold lasing in the 1.55 μm telecom window. Here, we demonstrate the first quantum dot microdisk laser with single-mode emission around 1.55 μm under continuous-wave optical pumping up to 170 K. The extracted threshold is as low as 32 μW at 77 K. This result lays the foundation of an alternative to quantum-well microlasers for low-threshold and highly compact monolithically integratable light emitting sources in fiber communication.

[1]  Michael Jetter,et al.  Lasing properties of InP/(Ga 0.51 In 0.49 )P quantum dots in microdisk cavities , 2011 .

[2]  Zach DeVito,et al.  Opt , 2017 .

[3]  T. Chang,et al.  1.5- mu m InGaAs/InAlGaAs quantum-well microdisk lasers , 1993, IEEE Photonics Technology Letters.

[4]  Pierre Blondy,et al.  InAs quantum wires in InP-based microdisks: Mode identification and continuous wave room temperature laser operation , 2000 .

[5]  J. Merz,et al.  Lasing of InP/AlInAs quantum dots in AlInAs microdisk cavity , 2016 .

[6]  R Baets,et al.  Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. , 2007, Optics express.

[7]  Yuan Wang,et al.  Monolayer excitonic laser , 2015, Nature Photonics.

[8]  Kei May Lau,et al.  Optically pumped 1.3  μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. , 2016, Optics letters.

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Igor Aharonovich,et al.  Low threshold, room-temperature microdisk lasers in the blue spectral range , 2012, 1208.6452.

[11]  Tian Yang,et al.  Lasing characteristics of InAs quantum dot microcavity lasers as a function of temperature and wavelength. , 2007, Optics express.

[12]  Wei Li,et al.  Electrically pumped continuous-wave III–V quantum dot lasers on silicon , 2016, Nature Photonics.

[13]  F. Ren,et al.  Mask erosion during dry etching of deep features in III-V semiconductor structures , 1992 .

[14]  A. Stintz,et al.  Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots , 2004, quant-ph/0412085.

[15]  J. Merz,et al.  Lasing of whispering-gallery modes in asymmetric waveguide GaInP micro-disks with InP quantum dots , 2009 .

[16]  Gunnar Björk,et al.  Analysis of semiconductor microcavity lasers using rate equations , 1991 .

[17]  Umar Mohideen,et al.  Threshold characteristics of semiconductor microdisk lasers , 1993 .

[18]  A. Levi,et al.  RESONANT MODES AND LASER SPECTRUM OF MICRODISK LASERS , 1995 .

[19]  Yasuhiko Arakawa,et al.  Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding. , 2005, Optics express.

[20]  A. F. J. Levi,et al.  Whispering-gallery mode microdisk lasers , 1992 .

[21]  Jimmy Xu,et al.  Subwavelength silicon microcavities. , 2009, Optics express.

[22]  Toshihiko Baba,et al.  Low-threshold lasing and Purcell effect in microdisk lasers at room temperature , 2003 .

[23]  Shuji Nakamura,et al.  Room-temperature continuous-wave lasing in GaN/InGaN microdisks , 2007 .

[24]  L. Considine,et al.  Low-threshold lasing in novel microdisk geometries , 1996, IEEE Photonics Technology Letters.

[25]  D. Song,et al.  InGaAsP microdisk lasers on Al/sub x/O/sub y/ , 2000, IEEE Photonics Technology Letters.

[26]  Bernard Aspar,et al.  InP microdisk lasers on silicon wafer: CW room temperature operation at 1.6 [micro sign]m , 2001 .

[27]  James L. Merz,et al.  Lasing of whispering‐gallery modes in GaInP waveguide micro‐discs and rings with InP quantum dots , 2011 .

[28]  Yasuhiko Arakawa,et al.  Room-temperature lasing in a single nanowire with quantum dots , 2015 .

[29]  Kei May Lau,et al.  Enhanced optical properties of InAs/InAlGaAs/InP quantum dots grown by metal-organic chemical vapor deposition using a double-cap technique , 2016 .

[30]  J. Shainline,et al.  Continuous-wave subwavelength microdisk lasers at λ = 1.53 µm. , 2010, Optics express.