A Tighter Bound for Counting Max-Weight Solutions to 2SAT Instances

We give an algorithm for counting the number of max-weight solutions to a 2SAT formula, and improve the bound on its running timeto O(1.2377n). The main source of the improvement is a refinement ofthe method of analysis, where we extend the concept of compound (piecewiselinear) measures to multivariate measures, also allowing the optimalparameters for the measure to be found automatically. This method extensionshould be of independent interest.

[1]  Walter Kern,et al.  An improved deterministic local search algorithm for 3-SAT , 2004, Theor. Comput. Sci..

[2]  Dexter Kozen,et al.  The Design and Analysis of Algorithms , 1991, Texts and Monographs in Computer Science.

[3]  Olivier Dubois,et al.  Counting the Number of Solutions for Instances of Satisfiability , 1991, Theor. Comput. Sci..

[4]  Wenhui Zhang,et al.  Number of Models and Satisfiability of Sets of Clauses , 1996, Theor. Comput. Sci..

[5]  David Eppstein,et al.  Quasiconvex analysis of backtracking algorithms , 2003, SODA '04.

[6]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[7]  Magnus Wahlström,et al.  Algorithms, measures and upper bounds for satisfiability and related problems , 2007 .

[8]  H. Ryser Combinatorial Mathematics: THE PRINCIPLE OF INCLUSION AND EXCLUSION , 1963 .

[9]  Stefano Leonardi,et al.  Algorithms - ESA 2005, 13th Annual European Symposium, Palma de Mallorca, Spain, October 3-6, 2005, Proceedings , 2005, ESA.

[10]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[11]  Kazuo Iwama,et al.  Improved upper bounds for 3-SAT , 2004, SODA '04.

[12]  Magnus Wahlström,et al.  An Algorithm for the SAT Problem for Formulae of Linear Length , 2005, ESA.

[13]  Magnus Wahlström,et al.  Counting models for 2SAT and 3SAT formulae , 2005, Theor. Comput. Sci..

[14]  Fabrizio Grandoni,et al.  Some New Techniques in Design and Analysis of Exact (Exponential) Algorithms , 2005, Bull. EATCS.

[15]  Martin Fürer,et al.  Algorithms for Counting 2-SAT Solutions and Colorings with Applications , 2005, Electron. Colloquium Comput. Complex..

[16]  Magnus Wahlström,et al.  Counting Satisfying Assignments in 2-SAT and 3-SAT , 2002, COCOON.

[17]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..