Structured InP-based nanoantenna for photovoltaics applications

Abstract. Nanoresonators are used in photovoltaic applications to reduce the absorber volume by confining the electromagnetic fields. We employed a two-dimensional Maxwell equation solver to investigate the optical performance of a fully structured InP-based nanoresonator, allowing high optical absorption and being electrically compatible. We demonstrated a 60% broadband optical efficiency with a good angle tolerance: more than 40% optical efficiency for an incidence angle between 60 deg and 60 deg. We also addressed the fabrication process in identifying the main barriers and in proposing technological solutions.

[1]  Mark J. W. Rodwell,et al.  Ultralow resistance in situ Ohmic contacts to InGaAs/InP , 2008 .

[2]  Yasha Yi,et al.  Efficiency enhancement in Si solar cells by textured photonic crystal back reflector , 2006 .

[3]  Sophie Bouchoule,et al.  Optimization of a Cl2–H2 inductively coupled plasma etching process adapted to nonthermalized InP wafers for the realization of deep ridge heterostructures , 2006 .

[4]  Christophe Ballif,et al.  Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler , 2010 .

[5]  G. Cody,et al.  Intensity enhancement in textured optical sheets for solar cells , 1982, IEEE Transactions on Electron Devices.

[6]  Jean-Luc Pelouard,et al.  Light funneling mechanism explained by magnetoelectric interference. , 2010, Physical review letters.

[7]  Philippe Lalanne,et al.  Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires. , 2013, Optics express.

[8]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[9]  Kui‐Qing Peng,et al.  Silicon Nanowires for Photovoltaic Solar Energy Conversion , 2011, Advanced materials.

[10]  A. Goetzberger Optical confinement in thin Si-solar cells by diffuse back reflectors , 1981 .

[11]  Magnus T. Borgstroem InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit. , 2013 .

[12]  G. Whitesides,et al.  Light Trapping in Ultrathin Plasmonic Solar Cells References and Links , 2022 .

[13]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[14]  Zongfu Yu,et al.  Fundamental limit of light trapping in grating structures. , 2010, Optics express.

[15]  Shapira,et al.  Evidence for low intrinsic surface-recombination velocity on p-type InP. , 1991, Physical review. B, Condensed matter.

[16]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[17]  K. Catchpole,et al.  Nanophotonic light trapping in solar cells , 2012 .

[18]  J. Pelouard,et al.  Fast modal method for crossed grating computation, combining finite formulation of Maxwell equations with polynomial approximated constitutive relations. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[19]  Philippe Lalanne,et al.  Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells , 2012 .

[20]  L. Novotný,et al.  Antennas for light , 2011 .

[21]  Zakya H. Kafafi,et al.  Organic Photovoltaics: Plasmonic‐Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier (Adv. Mater. 17/2013) , 2013 .

[22]  Jean-Luc Pelouard,et al.  λ³/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography. , 2011, Nano letters.

[23]  H. Fujiwara,et al.  Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern , 2008 .

[24]  Qiaoqiang Gan,et al.  Plasmonic‐Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier , 2013, Advanced materials.

[25]  M. Green,et al.  Plasmonics for photovoltaic applications , 2010 .

[26]  H. C. Casey,et al.  Evidence for low surface recombination velocity on n‐type InP , 1977 .

[27]  K. Schjølberg-Henriksen,et al.  Anodic bonding of glass to aluminium , 2006 .