Bose-Einstein Condensation in Microgravity

Going Down the Tube Two pillars of modern physics are quantum mechanics and general relativity. So far, both have remained apart with no quantum mechanical description of gravity available. Van Zoest et al. (p. 1540; see the Perspective by Nussenzveig and Barata) present work with a macroscopic quantum mechanical system—a Bose-Einstein condensate (BEC) of rubidium atoms in which the cloud of atoms is cooled into a collective quantum state—in microgravity. By dropping the BEC down a 146-meter-long drop chamber and monitoring the expansion of the quantum gas under these microgravity conditions, the authors provide a proof-of-principle demonstration of a technique that can probe the boundary of quantum mechanics and general relativity and perhaps offer the opportunity to reconcile the two experimentally. Studies of atomic quantum states in free-fall conditions may provide ways to test predictions of general relativity. Albert Einstein’s insight that it is impossible to distinguish a local experiment in a “freely falling elevator” from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter.

[1]  M. W. Levine,et al.  A test of the equivalence principle using a space-borne clock , 1979 .

[2]  L. Santos,et al.  Observation of dipole-dipole interaction in a degenerate quantum gas. , 2005, Physical review letters.

[3]  József Fortágh,et al.  Magnetic microtraps for ultracold atoms , 2007 .

[4]  A. Peters,et al.  Measurement of gravitational acceleration by dropping atoms , 1999, Nature.

[5]  Wolfe,et al.  Evidence for Bose-Einstein condensation of a two-component exciton gas. , 1990, Physical review letters.

[6]  Massimo Inguscio,et al.  Anderson localization of a non-interacting Bose–Einstein condensate , 2008, Nature.

[7]  F. L. Walls,et al.  Primary Atomic Frequency Standards at NIST , 2001, Journal of research of the National Institute of Standards and Technology.

[8]  W. W. Hansen,et al.  Nuclear Induction , 2011 .

[9]  Andrews,et al.  Evaporative cooling of sodium atoms. , 1995, Physical review letters.

[10]  A. Peters,et al.  High-precision gravity measurements using atom interferometry , 1998 .

[11]  Joerg Schmiedmayer,et al.  GUIDING NEUTRAL ATOMS WITH A WIRE , 1999 .

[12]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[13]  Ignazio Ciufolini,et al.  Dragging of inertial frames , 2007, Nature.

[14]  Albert Einstein,et al.  Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung , 2006 .

[15]  W. Ketterle,et al.  Cooling Bose-Einstein Condensates Below 500 Picokelvin , 2003, Science.

[16]  A. Polyakov,et al.  The string dilation and a least coupling principle , 1994, hep-th/9401069.

[17]  James G. Williams,et al.  Progress in lunar laser ranging tests of relativistic gravity. , 2006, Physical review letters.

[18]  D. Pritchard Cooling Neutral Atoms in a Magnetic Trap for Precision Spectroscopy , 1983 .

[19]  E. Aydil,et al.  Hot-Electron Transfer from Semiconductor Nanocrystals , 2010, Science.

[20]  W. Schleich,et al.  A freely falling magneto-optical trap drop tower experiment , 2007 .

[21]  Bose Plancks Gesetz und Lichtquantenhypothese , 1924 .

[22]  W. Paul,et al.  A magnetic storage ring for neutrons , 1978 .

[23]  Harold Metcalf,et al.  Laser Cooling and Trapping , 1999, Peking University-World Scientific Advanced Physics Series.

[24]  Panos M. Pardalos,et al.  Erratum , 1988, Discret. Appl. Math..

[25]  C. Kurtsiefer,et al.  Coherent Excitation of a He* Beam Observed in Atomic Momentum Distributions , 1996, EQEC'96. 1996 European Quantum Electronic Conference.

[26]  M. Weitz,et al.  All-optical realization of an atom laser , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[27]  F. Lison,et al.  Rubidium spectroscopy at 778–780 nm with a distributed feedback laser diode , 2005 .

[28]  G. Erbert,et al.  Compact hybrid master oscillator power amplifier with 3.1-W CW output power at wavelengths around 1061 nm , 2004, IEEE Photonics Technology Letters.

[29]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Contents , 2008 .

[30]  A. Peters,et al.  Bose–Einstein condensates in microgravity , 2006 .

[31]  W. Gawlik,et al.  Laser frequency stabilization by Doppler-free magnetic dichroism , 2002 .

[32]  Ignazio Ciufolini,et al.  Gravitation and Inertia , 2018 .

[33]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[34]  G. Varoquaux,et al.  I.C.E.: a transportable atomic inertial sensor for test in microgravity , 2006, cond-mat/0605057.

[35]  R. Decher,et al.  Test of relativistic gravitation with a space-borne hydrogen maser , 1980 .

[36]  Holland,et al.  Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[37]  Images of evaporative cooling to Bose-Einstein condensation , 2002 .

[38]  C. Xie,et al.  Characteristics of absorption and dispersion for rubidium D2 lines with the modulation transfer spectrum. , 2003, Optics express.

[39]  N F Ramsey Experiments with separated oscillatory fields and hydrogen masers. , 1990, Science.

[40]  C. cohen-tannoudji,et al.  Laser cooling below the Doppler limit by polarization gradients: simple theoretical models , 1989 .

[41]  Faculte De Medecine,et al.  UNIVERSITE PIERRE ET MARIE CURIE (PARIS 6) , 2011 .

[42]  Dropping cold quantum gases on Earth over long times and large distances , 2006, cond-mat/0610637.

[43]  E. C. Pavlis,et al.  A confirmation of the general relativistic prediction of the Lense–Thirring effect , 2004, Nature.

[44]  G. Aeppli,et al.  Proceedings of the International School of Physics Enrico Fermi , 1994 .

[45]  G. Varoquaux,et al.  Light-pulse atom interferometry in microgravity , 2009, 0903.3284.

[46]  P. Hommelhoff,et al.  Bose–Einstein condensation on a microelectronic chip , 2001, Nature.

[47]  C. Zimmermann,et al.  Bose-Einstein condensation in a surface microtrap. , 2001, Physical review letters.

[48]  W. Phillips Nobel Lecture: Laser cooling and trapping of neutral atoms , 1998 .

[49]  J. Shirley,et al.  Modulation transfer processes in optical heterodyne saturation spectroscopy. , 1982, Optics letters.

[50]  S. Bize,et al.  Cold collision frequency shifts in a 87Rb atomic fountain. , 2000, Physical review letters.

[51]  R.J.C. Spreeuw,et al.  The Two-Dimensional Magneto-optical Trap as a Source of Slow Atoms , 1998 .

[52]  Ettore Majorana Atomi orientati in campo magnetico variabile , 1932 .

[53]  The Oklo bound on the time variation of the fine-structure constant revisited , 1996, hep-ph/9606486.

[54]  J. Carroll,et al.  Distributed feedback semiconductor lasers , 1998 .

[55]  W. Paul,et al.  Optische Abbildung mit neutralen Atomen , 2004, Naturwissenschaften.

[56]  A. Miffre,et al.  Atom interferometry , 2006, quant-ph/0605055.

[57]  André Clairon,et al.  Quantum projection noise in an atomic fountain: a high stability cesium frequency standard , 1999 .

[58]  T. Sumner Equivalence Principle Measurements , 2004 .

[59]  R. Lutwak,et al.  Coherent Splitting of Bose-Einstein Condensed Atoms With Optically Induced Bragg Diffraction , 1999 .

[60]  J. Schmiedmayer,et al.  Optimized magneto-optical trap for experiments with ultracold atoms near surfaces , 2003, cond-mat/0311475.

[61]  T. W. Hänsch,et al.  Applications of integrated magnetic microtraps , 2001 .

[62]  J. Reichel,et al.  Laser cooling of atoms in micro-gravity , 1993 .

[63]  A. Aspect,et al.  Direct observation of Anderson localization of matter waves in a controlled disorder , 2008, Nature.

[64]  V V Flambaum,et al.  Further evidence for cosmological evolution of the fine structure constant. , 2001, Physical review letters.

[65]  Ph Laurent,et al.  Search for variations of fundamental constants using atomic fountain clocks. , 2003, Physical review letters.

[66]  C. Lämmerzahl The search for quantum gravity effects I , 2006 .

[67]  R. Frueholz,et al.  A dressed atom interpretation of adiabatic rapid passage , 1984 .

[68]  Castin,et al.  Bose-Einstein Condensates in Time Dependent Traps. , 1996, Physical review letters.

[69]  Bradley,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.

[70]  J. Schmiedmayer,et al.  Microscopic atom optics: from wires to an atom chip , 2008, 0805.2613.

[71]  Kagan,et al.  Evolution of a Bose-condensed gas under variations of the confining potential. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[72]  André Clairon,et al.  A cold atom clock in absence of gravity , 1998 .

[73]  K. Bongs,et al.  Physics with coherent matter waves , 2004 .

[74]  T. Hänsch,et al.  Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle. , 2004, Physical review letters.

[75]  Weinstein,et al.  Microscopic magnetic traps for neutral atoms. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[76]  P. Schwindt Magnetic Traps and Guides for Bose-Einstein Condensates on an Atom Chip: Progress toward a Coherent Atom Waveguide Beamsplitter , 2003 .

[77]  K. Bongs,et al.  Dynamics and thermodynamics in spinor quantum gases , 2004 .

[78]  M. Saccoccio,et al.  Design of the cold atom PHARAO space clock and initial test results , 2006 .

[79]  Low velocity quantum reflection of Bose-Einstein condensates. , 2006, Physical review letters.

[80]  A. Bauch,et al.  New experimental limit on the validity of local position invariance , 2002 .

[81]  Gary C. Bjorklund,et al.  Frequency modulation (FM) spectroscopy , 1983 .

[82]  A. Miklich,et al.  Bragg scattering of atoms from a standing light wave. , 1988, Physical review letters.

[83]  C. Wieman,et al.  Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments , 2002 .

[84]  G. Bjorklund,et al.  Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions. , 1980, Optics letters.

[85]  W. Ketterle Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser* , 2002 .

[86]  E. Whittaker,et al.  Theoretical description of frequency modulation and wavelength modulation spectroscopy. , 1994, Applied optics.

[87]  A. C. Wilson,et al.  Narrow-linewidth master-oscillator power amplifier based on a semiconductor tapered amplifier. , 1998, Applied optics.

[88]  Phillips,et al.  Observation of atoms laser cooled below the Doppler limit. , 1988, Physical review letters.

[89]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[90]  Metcalf,et al.  Magnetostatic trapping fields for neutral atoms. , 1987, Physical review. A, General physics.

[91]  McGowan,et al.  Theoretical and experimental study of the Bragg scattering of atoms from a standing light wave. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[92]  M. Kasevich,et al.  Testing general relativity with atom interferometry. , 2006, Physical review letters.

[93]  W. Wing On neutral particle trapping in quasistatic electromagnetic fields , 1984 .

[94]  P. Uhrich,et al.  Cold atoms in space and atomic clocks: ACES , 2001 .

[95]  K. Dieckmann,et al.  Bose-Einstein condensation with high atom number in a deep magnetic trap , 2001 .

[96]  Savas Dimopoulos,et al.  Atomic gravitational wave interferometric sensor , 2008, 0806.2125.

[97]  W. Ketterle,et al.  Making, probing and understanding Bose-Einstein condensates , 1999, cond-mat/9904034.

[98]  Salomon,et al.  Raman cooling of cesium below 3 nK: New approach inspired by Lévy flight statistics. , 1995, Physical review letters.