New small regular graphs of girth 5
暂无分享,去创建一个
Camino Balbuena | Encarnación Abajo | Manuel Bendala | Gabriela Araujo-Pardo | C. Balbuena | G. Araujo-Pardo | E. Abajo | Manuel Bendala
[1] Leif K. Jørgensen. Girth 5 graphs from relative difference sets , 2005, Discret. Math..
[2] N. Robertson. The smallest graph of girth 5 and valency 4 , 1964 .
[3] J. Singer. A theorem in finite projective geometry and some applications to number theory , 1938 .
[4] M. Funk,et al. Girth Graphs from Elliptic Semiplanes , 2010 .
[5] H. Coxeter. Self-dual configurations and regular graphs , 1950 .
[6] Felix Lazebnik,et al. Explicit Construction of Graphs with an Arbitrary Large Girth and of Large Size , 1995, Discret. Appl. Math..
[7] Vito Napolitano,et al. A (0, 1)-Matrix Framework for Elliptic Semiplanes , 2008, Ars Comb..
[8] M. Meringer. Fast generation of regular graphs and construction of cages , 1999, Journal of Graph Theory.
[9] Tomaz Pisanski,et al. ALL GENERALIZED PETERSEN GRAPHS ARE UNIT-DISTANCE GRAPHS , 2012 .
[10] Vito Napolitano,et al. Íëìêêääëááae Âçíêaeaeä Ç Çååáaeaeìçêááë Îóðùññ ¿½´¾¼¼¼µ¸è× ½½½ß¾¼¼ , 2022 .
[11] M. O'Keefe,et al. A smallest graph of girth 5 and valency 6 , 1979, J. Comb. Theory, Ser. B.
[12] Camino Balbuena,et al. Incidence Matrices of Projective Planes and of Some Regular Bipartite Graphs of Girth 6 with Few Vertices , 2008, SIAM J. Discret. Math..
[13] Mirka Miller,et al. Large vertex-transitive graphs of diameter 2 from incidence graphs of biaffine planes , 2013, Discret. Math..
[14] Camino Balbuena,et al. Families of small regular graphs of girth 5 , 2011, Discret. Math..
[15] Camino Balbuena,et al. Constructions of small regular bipartite graphs of girth 6 , 2011, Networks.
[16] Paul R. Hafner. Geometric realisation of the graphs of McKay-Miller-Sirán , 2004, J. Comb. Theory, Ser. B.
[17] G. Exoo,et al. Dynamic Cage Survey , 2011 .
[18] Vito Napolitano,et al. A family of regular graphs of girth 5 , 2008, Discret. Math..
[19] G. Wegner. A smallest graph of girth 5 and valency 5 , 1973 .
[20] Alan J. Hoffman,et al. On Moore Graphs with Diameters 2 and 3 , 1960, IBM J. Res. Dev..
[21] Pak-Ken Wong,et al. Cages - a survey , 1982, J. Graph Theory.
[22] W. T. Tutte. A family of cubical graphs , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.
[23] Pak-Ken Wong,et al. On the uniqueness of the smallest graph of girth 5 and valency 6 , 1979, J. Graph Theory.
[24] Camino Balbuena,et al. Finding small regular graphs of girths 6, 8 and 12 as subgraphs of cages , 2010, Discret. Math..