Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction

A new optimization technique, stochastic parallel-gradient descent, is applied for high-resolution adaptive wave-front correction. A performance criterion for parallel-perturbation-based algorithms is introduced and applied to optimize adaptive system architecture. We present numerical simulation results for an adaptive imaging system based on the stochastic parallel-perturbation technique, along with experimental results obtained for a white-light adaptive imaging system with 37 control channels. An adaptive system with a self-organized (adaptive) control channel hierarchy is introduced and analyzed.

[1]  Mikhail A. Vorontsov,et al.  Parallel perturbation gradient descent algorithm for adaptive wavefront correction , 1997, Optics & Photonics.

[2]  David G. Voelz,et al.  Image quality criteria for an adaptive imaging system based on statistical analysis of the speckle field , 1996 .

[3]  T. R. O’Meara,et al.  The multidither principle in adaptive optics , 1977 .

[4]  P. Sarro,et al.  Flexible mirror micromachined in silicon. , 1995, Applied optics.

[5]  Ron Meir,et al.  A Parallel Gradient Descent Method for Learning in Analog VLSI Neural Networks , 1992, NIPS.

[6]  Mikhail A. Vorontsov,et al.  Coherent optical processor for image-quality metric measurement , 1997, Optics & Photonics.

[7]  M A Vorontsov,et al.  Adaptive phase-distortion correction based on parallel gradient-descent optimization. , 1997, Optics letters.

[8]  David L. Fried,et al.  Statistics of a Geometric Representation of Wavefront Distortion: Errata , 1965 .

[9]  Mikhail A. Vorontsov,et al.  Adaptive active imaging system based on radiation focusing for extended targets , 1997, Optics & Photonics.

[10]  M A Vorontsov,et al.  Adaptive imaging system for phase-distorted extended source and multiple-distance objects. , 1997, Applied optics.

[11]  David L. Fried,et al.  Power spectra requirements for wave-front-compensative systems* , 1976 .

[12]  J. Beckers ADAPTIVE OPTICS FOR ASTRONOMY: Principles, Performance, and Applications , 1993 .

[13]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .

[14]  L P Schelonka,et al.  Single-pass imaging through a thick dynamic distorter using four-wave mixing. , 1990, Optics letters.

[15]  Thomas Kailath,et al.  Model-free distributed learning , 1990, IEEE Trans. Neural Networks.

[16]  J.M. Younse,et al.  Mirrors on a chip , 1993, IEEE Spectrum.

[17]  Gordon D. Love,et al.  Adaptive wavefront shaping with liquid crystals , 1995 .

[18]  Mikhail A. Vorontsov,et al.  Optical simulation of phase-distorted imaging systems: nonlinear and adaptive optics approach , 1995 .

[19]  V. P. Sivokon,et al.  High-resolution adaptive phase distortion suppression based solely on intensity information , 1998 .

[20]  Gert Cauwenberghs,et al.  A Fast Stochastic Error-Descent Algorithm for Supervised Learning and Optimization , 1992, NIPS.

[21]  James R. Fienup,et al.  Joint estimation of object and aberrations by using phase diversity , 1992 .

[22]  J Shamir,et al.  Iterative optimization algorithms for filter generation in optical correlators: a comparison. , 1992, Applied optics.

[23]  Victor M. Bright,et al.  Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: theoretical and experimental results , 1997 .

[24]  Garret Moddel,et al.  Spatial Light Modulators: Processing Light in Real Time , 1997 .

[25]  T. R. O’Meara Stability of an N-loop ensemble-reference phase control system , 1977 .

[26]  Gert Cauwenberghs,et al.  Analog VLSI Stochastic Perturbative Learning Architectures , 1997 .

[27]  L. I. Goldfischer Autocorrelation Function and Power Spectral Density of Laser-Produced Speckle Patterns , 1965 .