Understanding the Transition to Seizure by Modeling the Epileptiform Activity of General Anesthetic Agents

A central difficulty in modeling epileptogenesis using biologically plausible computational and mathematical models is not the production of activity characteristic of a seizure, but rather producing it in response to specific and quantifiable physiologic change or pathologic abnormality. This is particularly problematic when it is considered that the pathophysiological genesis of most epilepsies is largely unknown. However, several volatile general anesthetic agents, whose principle targets of action are quantifiably well characterized, are also known to be proconvulsant. The authors describe recent approaches to theoretically describing the electroencephalographic effects of volatile general anesthetic agents that may be able to provide important insights into the physiologic mechanisms that underpin seizure initiation.

[1]  J L Neigh,et al.  The Electroencephalographic Pattern during Anesthesia with Ethrane: Effects of Depth of Anesthesia Paco2, and Nitrous Oxide , 1971, Anesthesiology.

[2]  N. T. Smith,et al.  Relationship of Pre‐ and Postanesthetic EEG Abnormalities to Enflurane‐Induced Seizure Activity , 1977, Anesthesia and analgesia.

[3]  A. J. Hermans,et al.  A model of the spatial-temporal characteristics of the alpha rhythm. , 1982, Bulletin of mathematical biology.

[4]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[5]  U. Heinemann,et al.  Epileptiform activity in combined slices of the hippocampus, subiculum and entorhinal cortex during perfusion with low magnesium medium , 1986, Neuroscience Letters.

[6]  L. S. Schulman,et al.  Models of synchronized hippocampal bursts in the presence of inhibition. II. Ongoing spontaneous population events. , 1987, Journal of neurophysiology.

[7]  J. Mellanby,et al.  Limbic Epilepsy Induced by Tetanus Toxin: A Longitudinal Electroencephalographic Study , 1987, Epilepsia.

[8]  C. Kufta,et al.  Effect of isoflurane and enflurane on the electrocorticogram of epileptic patients , 1988, Neurology.

[9]  Prof. Dr. Valentino Braitenberg,et al.  Anatomy of the Cortex , 1991, Studies of Brain Function.

[10]  G. W. Bruyn Anatomy of the cortex, statistics and geometry V. Braitenberg and A. Schüz (eds.), Springer-Verlag, Berlin, Heídelberg, 1991, 249 pages, DM 58.00 (soft-cover) , 1991, Journal of the Neurological Sciences.

[11]  T. M. Mayhew,et al.  Anatomy of the Cortex: Statistics and Geometry. , 1991 .

[12]  Y. Ikemoto,et al.  Seizure-like movements during induction of anaesthesia with sevoflurane. , 1992, British journal of anaesthesia.

[13]  F. H. Lopes da Silva,et al.  Dynamics of local neuronal networks: control parameters and state bifurcations in epileptogenesis. , 1994, Progress in brain research.

[14]  H. Komatsu,et al.  POSSIBLE PARTICIPATION OF NMDA AND GLYCINE RECEPTORS BUT NOT GABAA RECEPTORS IN ENFLURANE‐INDUCED OPISTHOTONUS IN MICE , 1994, Clinical and experimental pharmacology & physiology.

[15]  W. R. Lieb,et al.  Molecular and cellular mechanisms of general anaesthesia , 1994, Nature.

[16]  W. J. Nowack Neocortical Dynamics and Human EEG Rhythms , 1995, Neurology.

[17]  W. R. Lieb,et al.  Temperature Dependence of the Potency of Volatile General Anesthetics: Implications for In Vitro Experiments , 1996, Anesthesiology.

[18]  H. Haken,et al.  Field Theory of Electromagnetic Brain Activity. , 1996, Physical review letters.

[19]  A. Mikulec,et al.  Volatile Anesthetics Depress Glutamate Transmission Via Presynaptic Actions , 1996, Anesthesiology.

[20]  J. Benson,et al.  The GABAA receptors. From subunits to diverse functions. , 1996, Ion channels.

[21]  D. Liley A continuum model of the mammalian alpha rhythm , 1997 .

[22]  D. Contreras,et al.  Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. , 1997, Journal of neurophysiology.

[23]  A. Bösenberg Convulsions and sevoflurane. , 1997, Paediatric anaesthesia.

[24]  Bösenberg At Convulsions and sevoflurane. , 1997 .

[25]  E. Costa From GABAA receptor diversity emerges a unified vision of GABAergic inhibition. , 1998, Annual review of pharmacology and toxicology.

[26]  W. R. Lieb,et al.  Which molecular targets are most relevant to general anaesthesia? , 1998, Toxicology letters.

[27]  E A Barnard,et al.  International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. , 1998, Pharmacological reviews.

[28]  Bruce J. Fisch,et al.  Fisch and Spehlmann's Eeg Primer: Basic Principles of Digital and Analog Eeg , 1999 .

[29]  F. L. D. Silva,et al.  Dynamics of the human alpha rhythm: evidence for non-linearity? , 1999, Clinical Neurophysiology.

[30]  R. Traub,et al.  Fast Oscillations in Cortical Circuits , 1999 .

[31]  David T. J. Liley,et al.  A continuum theory of electro-cortical activity , 1999, Neurocomputing.

[32]  D. Liley,et al.  Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  A. Yli-Hankala,et al.  Epileptiform EEG during sevoflurane mask induction: effect of delaying the onset of hyperventilation. , 2000, Acta anaesthesiologica Scandinavica.

[34]  Nicholas P. Franks,et al.  Contrasting Synaptic Actions of the Inhalational General Anesthetics Isoflurane and Xenon , 2000, Anesthesiology.

[35]  M. MacIver,et al.  Excitatory Synaptic Transmission Mediated by NMDA Receptors Is More Sensitive to Isoflurane than Are Non-NMDA Receptor-mediated Responses , 2000, Anesthesiology.

[36]  R. Silberstein,et al.  Steady-state visual evoked potentials and travelling waves , 2000, Clinical Neurophysiology.

[37]  G. Johnston,et al.  GABA-Activated ligand gated ion channels: medicinal chemistry and molecular biology. , 2000, Journal of medicinal chemistry.

[38]  B. Kendall Nonlinear Dynamics and Chaos , 2001 .

[39]  P. Robinson,et al.  Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  A. Yli-Hankala,et al.  Sevoflurane mask induction of anaesthesia is associated with epileptiform EEG in children , 2001, Acta anaesthesiologica Scandinavica.

[41]  D. Treiman GABAergic Mechanisms in Epilepsy , 2001, Epilepsia.

[42]  D. Liley,et al.  Robust chaos in a model of the electroencephalogram: Implications for brain dynamics. , 2001, Chaos.

[43]  Heiko J. Luhmann,et al.  Epileptiform activity in a neocortical network: a mathematical model , 2001, Biological Cybernetics.

[44]  J. Bellanger,et al.  Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition , 2002, The European journal of neuroscience.

[45]  Erwin Sigel,et al.  Mapping of the benzodiazepine recognition site on GABA(A) receptors. , 2002, Current topics in medicinal chemistry.

[46]  C. D. Richards Anaesthetic modulation of synaptic transmission in the mammalian CNS. , 2002, British journal of anaesthesia.

[47]  Mathew P. Dafilis,et al.  A spatially continuous mean field theory of electrocortical activity , 2002, Network.

[48]  Bard Ermentrout,et al.  Simulating, analyzing, and animating dynamical systems - a guide to XPPAUT for researchers and students , 2002, Software, environments, tools.

[49]  Darrell R. Abernethy,et al.  International Union of Pharmacology: Approaches to the Nomenclature of Voltage-Gated Ion Channels , 2003, Pharmacological Reviews.

[50]  John G R Jefferys,et al.  Models and Mechanisms of Experimental Epilepsies , 2003, Epilepsia.

[51]  A. Gottschalk,et al.  Computational Aspects of Anesthetic Action in Simple Neural Models , 2003, Anesthesiology.

[52]  B. Antkowiak,et al.  Molecular and neuronal substrates for general anaesthetics , 2004, Nature Reviews Neuroscience.

[53]  F. H. Lopes da Silva,et al.  Model of brain rhythmic activity , 1974, Kybernetik.

[54]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[55]  M. Steriade,et al.  Neocortical seizures: initiation, development and cessation , 2004, Neuroscience.

[56]  F. L. D. Silva,et al.  Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network , 2004, Neuroscience.

[57]  Ingo Bojak,et al.  Electrorhythmogenesis and anaesthesia in a physiological mean field theory , 2004, Neurocomputing.

[58]  C. Jeleazcov,et al.  Does the EEG During Isoflurane/Alfentanil Anesthesia Differ from Linear Random Data? , 2002, Journal of Clinical Monitoring and Computing.

[59]  M. Kramer,et al.  Pathological pattern formation and cortical propagation of epileptic seizures , 2005, Journal of The Royal Society Interface.

[60]  I. Constant,et al.  Sevoflurane and epileptiform EEG changes , 2005, Paediatric anaesthesia.

[61]  E. Harth,et al.  Electric Fields of the Brain: The Neurophysics of Eeg , 2005 .

[62]  D. Liley,et al.  Modeling the effects of anesthesia on the electroencephalogram. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.