A Prediction Algorithm based on Markov Chains for finding the Minimum Cost Path in a Mobile WSNs

In this paper we propose the usage of a prediction technique based on Markov Chains to predict nodes positions with the aim of obtain short paths at minimum energy consumption. Specifically, the valuable information from the mobility prediction method is provided to our distributed routing algorithm in order to take the best network decisions considering future states of network resources. In this sense, in each network node, the mobility method employed is based on a Markov model to forecast future RSSI states of neighboring nodes for determining if they will be farther or closer within the next steps. The approach is evaluated considering different algorithms such as: Distance algorithm, Distance Away algorithm and Random algorithm. In addition, with the aim of performing comparisons against optimal values, we present a mathematical optimization model for finding the minimum cost path between a source and a destination node considering all network nodes are mobile. This paper is an extended variant of [8].