Output Tracking via Adaptive Backstepping Higher Order Integral Sliding Mode for Uncertain Nonlinear Systems

The authors propose a new tracking control design strategy for uncertain non-linear systems which are convertible to Semi-Strict Feedback Form (SSFF). The system in SSFF is first converted into new variables via existing adaptive backstepping control techniques. The control law is obtained by combining adaptive backstepping procedure and higher order integral sliding mode. The component of control law designed via backstepping is continuous which shows robustness against parametric uncertainties where as the discontinuous control component provides robustness against unmodeled dynamics and external disturbances. Since, this strategy relies on an integral manifold of the adaptively developed variables, therefore, the reaching phase is eliminated in this approach, which is an advantage in term of robustness. Furthermore, the parameters update law correctly provides the estimation of parameters which is again results in enhanced robustness of the strategy. The stability of proposed method is analysed theoretically and validated through a numerical example.

[1]  Michel Fliess,et al.  Nonlinear control theory and differential algebra , 1988 .

[2]  I. Kanellakopoulos,et al.  Systematic Design of Adaptive Controllers for Feedback Linearizable Systems , 1991, 1991 American Control Conference.

[3]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[4]  I. Kanellakopoulos,et al.  Adaptive nonlinear control without overparametrization , 1992 .

[5]  A. Levant Sliding order and sliding accuracy in sliding mode control , 1993 .

[6]  M. Rios-Bolivar,et al.  Adaptive input-output linearization for PWM regulation of DC-to-DC power converters , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[7]  Woosoon Yim,et al.  Proceedings of the 1995 American Control Conference , 1995 .

[8]  D. Mayne Nonlinear and Adaptive Control Design [Book Review] , 1996, IEEE Transactions on Automatic Control.

[9]  M. Rios-Bolivar,et al.  Dynamical adaptive backstepping control design via symbolic computation , 1997, 1997 European Control Conference (ECC).

[10]  A. S. I. Zinober,et al.  A symbolic computation toolbox for the design of dynamical adaptive nonlinear controllers , 1998 .

[11]  Christopher Edwards,et al.  Sliding mode control : theory and applications , 1998 .

[12]  S. Spurgeon,et al.  Output feedback stabilization of SISO nonlinear systems via dynamic sliding modes , 1998 .

[13]  Sarah K. Spurgeon,et al.  Output feedback stabilization of MIMO non-linear systems via dynamic sliding mode , 1999 .

[14]  Vadim I. Utkin,et al.  Sliding mode control in electromechanical systems , 1999 .

[15]  A. Jafari Koshkouei,et al.  Adaptive Sliding Backstepping Control of Nonlinear Semi-Strict Feedback Form Systems , 1999 .

[16]  Alan S. I. Zinober,et al.  Adaptive Output Tracking Backstepping Sliding Mode Control of Nonlinear Systems , 2000 .

[17]  Arie Levant,et al.  Universal single-input-single-output (SISO) sliding-mode controllers with finite-time convergence , 2001, IEEE Trans. Autom. Control..

[18]  A. Levant Universal SISO sliding-mode controllers with finite-time convergence , 2001 .

[19]  Keith J. Burnham,et al.  Dynamic sliding mode control design , 2005 .

[20]  Arie Levant,et al.  Integral High-Order Sliding Modes , 2007, IEEE Transactions on Automatic Control.

[21]  Franck Plestan,et al.  Higher order sliding mode control based on integral sliding mode , 2007, Autom..

[22]  Issa Amadou Tall State and feedback linearizations of single-input control systems , 2010, Syst. Control. Lett..

[23]  Qudrat Khan,et al.  Dynamic integral sliding mode for MIMO uncertain nonlinear systems , 2011 .

[24]  Leonid M. Fridman,et al.  Uniform Robust Exact Differentiator , 2011, IEEE Trans. Autom. Control..

[25]  Ayad R. Khudair,et al.  Feedback linearization of single-input nonlinear differential algebraic control systems , 2013 .