Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications

Cellulose is the most abundant biomass material in nature. Extracted from natural fibers, its hierarchical and multi-level organization allows different kinds of nanoscaled cellulosic fillers—called cellulose nanocrystals or microfibrillated cellulose (MFC)—to be obtained. Recently, such cellulose nanoparticles have been the focus of an exponentially increasing number of works or reviews devoted to understanding such materials and their applications. Major studies over the last decades have shown that cellulose nanoparticles could be used as fillers to improve mechanical and barrier properties of biocomposites. Their use for industrial packaging is being investigated, with continuous studies to find innovative solutions for efficient and sustainable systems. Processing is more and more important and different systems are detailed in this paper depending on the polymer solubility, i.e., (i) hydrosoluble systems, (ii) non-hydrosoluble systems, and (iii) emulsion systems. This paper intends to give a clear overview of cellulose nanoparticles reinforced composites with more than 150 references by describing their preparation, characterization, properties and applications.

[1]  M. Takayanagi,et al.  Application of equivalent model method to dynamic rheo‐optical properties of crystalline polymer , 2007 .

[2]  Alain Dufresne,et al.  Cellulose nanocrystals reinforced poly(oxyethylene) , 2004 .

[3]  A. Błędzki,et al.  Composites reinforced with cellulose based fibres , 1999 .

[4]  P. Chang,et al.  Effects of polymer‐grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): A case of cellulose whisker‐graft‐polycaprolactone , 2009 .

[5]  J. Sugiyama,et al.  Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall , 1991 .

[6]  G. Chinga-Carrasco,et al.  Computer-assisted quantification of the multi-scale structure of films made of nanofibrillated cellulose , 2010 .

[7]  Akira Isogai,et al.  Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. , 2007, Biomacromolecules.

[8]  J. Cavaillé,et al.  Plasticized PVC reinforced with cellulose whiskers. I. Linear viscoelastic behavior analyzed through the quasi-point defect theory , 1999 .

[9]  Alain Dufresne,et al.  Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. , 2005, Biomacromolecules.

[10]  C. Biliaderis,et al.  Physical properties of starch nanocrystal-reinforced pullulan films , 2007 .

[11]  D. Gray,et al.  Effects of Ionic Strength on the Isotropic−Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites , 1996 .

[12]  A. Gandini,et al.  Chapter 1 – The State of the Art , 2008 .

[13]  W. Winter,et al.  Nanocomposites of Cellulose Acetate Butyrate Reinforced with Cellulose Nanocrystals , 2002 .

[14]  Ichiro Sakurada,et al.  Experimental determination of the elastic modulus of crystalline regions in oriented polymers , 1962 .

[15]  R. Rowell,et al.  Characterization and Factors Effecting Fiber Properties , 2000 .

[16]  P. Dubois,et al.  Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization , 2008 .

[17]  J. Cavaillé,et al.  Mechanical behaviour above Tg of a plasticised PVC reinforced with cellulose whiskers; a SANS structural study , 1999 .

[18]  J. Sugiyama,et al.  Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment , 1990 .

[19]  Eduardo Ruiz-Hitzky,et al.  Bionanocomposites: A New Concept of Ecological, Bioinspired, and Functional Hybrid Materials , 2007 .

[20]  A. Dufresne,et al.  Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. , 2002, Biomacromolecules.

[21]  L. Lucia,et al.  Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.

[22]  Brian O'Connor,et al.  An ecotoxicological characterization of nanocrystalline cellulose (NCC) , 2010, Nanotoxicology.

[23]  A. Dufresne,et al.  Preparation of Cellulose Whiskers Reinforced Nanocomposites from an Organic Medium Suspension , 2004 .

[24]  M. Vignon,et al.  Structural aspects in ultrathin cellulose microfibrils followed by 13C CP-MAS NMR , 1999 .

[25]  Kristiina Oksman,et al.  Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis , 2006 .

[26]  Maya Jacob John,et al.  Biofibres and Biocomposites , 2008 .

[27]  V. Álvarez,et al.  Extraction of cellulose and preparation of nanocellulose from sisal fibers , 2008 .

[28]  Peter Lindner,et al.  Rodlike Cellulose Whiskers Coated with Surfactant: A Small-Angle Neutron Scattering Characterization , 2002 .

[29]  A. Dufresne,et al.  Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites , 2008 .

[30]  A. Dufresne Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. , 2006, Journal of nanoscience and nanotechnology.

[31]  A. S. Benight,et al.  Cellulose/DNA hybrid nanomaterials. , 2009, Biomacromolecules.

[32]  M. Sain,et al.  Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties , 2008 .

[33]  Lihui Weng,et al.  Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter. , 2005, Macromolecular bioscience.

[34]  Véronique Favier,et al.  Polymer Nanocomposites Reinforced by Cellulose Whiskers , 1995 .

[35]  Paul Langan,et al.  Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fiber diffraction. , 2002, Journal of the American Chemical Society.

[36]  H. Chanzy,et al.  Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents , 2002 .

[37]  F. Simon,et al.  A study of the effect of acetylation and propionylation surface treatments on natural fibres , 2005 .

[38]  Per Stenstad,et al.  Chemical surface modifications of microfibrillated cellulose , 2008 .

[39]  M. Vignon,et al.  Mercerization of primary wall cellulose and its implication for the conversion of cellulose I→cellulose II , 2002 .

[40]  E. Sjöström,et al.  Wood Chemistry: Fundamentals and Applications , 1981 .

[41]  A. Dufresne,et al.  Transcrystallization in Mcl-PHAs/Cellulose Whiskers Composites , 1999 .

[42]  Rémy Dendievel,et al.  Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions , 2007 .

[43]  A. Morin,et al.  Nanocomposites of Chitin Whiskers from Riftia Tubes and Poly(caprolactone) , 2002 .

[44]  Debes Bhattacharyya,et al.  Handbook of Engineering Biopolymers : Homopolymers, Blends and Composites , 2007 .

[45]  K. Oksman,et al.  Manufacturing process of cellulose whiskers/polylactic acid nanocomposites , 2006 .

[46]  K. Oksman,et al.  Orientation of cellulose nanowhiskers in polyvinyl alcohol , 2007 .

[47]  Kristiina Oksman,et al.  Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. , 2005, Biomacromolecules.

[48]  A. Dufresne,et al.  Plasticized starch/tunicin whiskers nanocomposites 2: Mechanical behavior , 2001 .

[49]  D. Gray,et al.  Dispersion of cellulose nanocrystals in polar organic solvents , 2007 .

[50]  A. Hult,et al.  Surface grafting of microfibrillated cellulose with poly(e-caprolactone) - Synthesis and characterization , 2008 .

[51]  L. Heux,et al.  Nonflocculating and Chiral-Nematic Self-ordering of Cellulose Microcrystals Suspensions in Nonpolar Solvents , 2000 .

[52]  R. Dendievel,et al.  Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers , 1999 .

[53]  Wen Bai,et al.  A technique for production of nanocrystalline cellulose with a narrow size distribution , 2009 .

[54]  A. Dufresne,et al.  Starch Nanocrystal Fillers in an Acrylic Polymer Matrix , 2005 .

[55]  A. Gandini,et al.  Surface esterification of cellulose fibers: characterization by DRIFT and contact angle measurements. , 2006, Journal of colloid and interface science.

[56]  B. Hinterstoisser,et al.  Sugar beet cellulose nanofibril-reinforced composites , 2007 .

[57]  Wim Thielemans,et al.  Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites , 2006 .

[58]  Hiroyuki Yano,et al.  Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure , 2005 .

[59]  W. Thielemans,et al.  Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). , 2009, Langmuir : the ACS journal of surfaces and colloids.

[60]  J. Cavaillé,et al.  Elastic, viscoelastic and plastic behavior of multiphase polymer blends , 1991 .

[61]  Takeshi Okano,et al.  Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose , 1998 .

[62]  L. Brinson,et al.  Polymer nanocomposites: A small part of the story , 2007 .

[63]  G. Canova,et al.  Etude de nouveaux matériaux composites obtenus à partir de latex filmogènes et de whiskers de cellulose : effets de percolation mécanique , 1995 .

[64]  Thomas Geiger,et al.  Cellulose Fibrils for Polymer Reinforcement , 2004 .

[65]  A. Dufresne,et al.  Plasticized Starch/Tunicin Whiskers Nanocomposites. 1. Structural Analysis , 2000 .

[66]  A. Dufresne,et al.  Improvement of Starch Film Performances Using Cellulose Microfibrils , 1998 .

[67]  Richard K. Johnson,et al.  A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix , 2009 .

[68]  A. Dufresne,et al.  Cross-Linked Nanocomposite Polymer Electrolytes Reinforced with Cellulose Whiskers , 2004 .

[69]  J. Araki,et al.  Steric Stabilization of a Cellulose Microcrystal Suspension by Poly(ethylene glycol) Grafting , 2001 .

[70]  M. Vignon,et al.  Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation , 2005 .

[71]  P. Askeland,et al.  Surface modification of microfibrillated cellulose for epoxy composite applications , 2008 .

[72]  J. Sugiyama,et al.  On the polarity of cellulose in the cell wall of Valonia , 1994, Planta.

[73]  Leena‐Sisko Johansson,et al.  Properties and characterization of hydrophobized microfibrillated cellulose , 2006 .

[74]  Alain Dufresne,et al.  Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. , 2003, Biomacromolecules.

[75]  A. Dufresne,et al.  Polysaccharide Microcrystals Reinforced Amorphous Poly(β-hydroxyoctanoate) Nanocomposite Materials , 1999 .

[76]  Bei Wang,et al.  Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers , 2007 .

[77]  Akira Isogai,et al.  Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. , 2006, Biomacromolecules.

[78]  J. Sugiyama,et al.  Combined infrared and electron diffraction study of the polymorphism of native celluloses , 1991 .

[79]  Alain Dufresne,et al.  Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils , 1997 .

[80]  Véronique Favier,et al.  Nanocomposite materials from latex and cellulose whiskers , 1995 .

[81]  J. Cavaillé,et al.  A Small-Angle Scattering Study of Cellulose Whiskers in Aqueous Suspensions , 1999 .

[82]  Alain Dufresne,et al.  Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior , 1996 .

[83]  K. Oksman,et al.  Dispersion and properties of cellulose nanowhiskers and layered silicates in cellulose acetate butyrate nanocomposites , 2009 .

[84]  Hendrik F. Hameka,et al.  Chemistry: Fundamentals and Applications , 2001 .

[85]  J. Cavaillé,et al.  Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers , 2006 .

[86]  E. Frollini,et al.  Composites based on jute fibers and phenolic matrices: Properties of fibers and composites , 2004 .

[87]  A. Ragauskas,et al.  Water transmission barrier properties of biodegradable films based on cellulosic whiskers and xylan , 2009 .

[88]  Akira Isogai,et al.  Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. , 2009, Biomacromolecules.

[89]  Qiuju Wu,et al.  A high strength nanocomposite based on microcrystalline cellulose and polyurethane. , 2007, Biomacromolecules.

[90]  A. Dufresne Cellulose-Based Composites and Nanocomposites , 2008 .

[91]  A. Dufresne,et al.  Surface functionalization of cellulose fibres and their incorporation in renewable polymeric matrices , 2008 .

[92]  Junji Sugiyama,et al.  Crystal structure and hydrogen bonding system in cellulose I(alpha) from synchrotron X-ray and neutron fiber diffraction. , 2003, Journal of the American Chemical Society.

[93]  Kristiina Oksman,et al.  Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement , 2006 .

[94]  J. I. Brauman Polymers , 1991, Science.

[95]  B. Dawson-Andoh,et al.  Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. , 2009, Bioresource technology.

[96]  S. Karlsson,et al.  Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties , 2004 .

[97]  John Simonsen,et al.  Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes , 2008 .

[98]  R. Atalla,et al.  Native Cellulose: A Composite of Two Distinct Crystalline Forms , 1984, Science.

[99]  Gunnar Henriksson,et al.  An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers , 2007 .

[100]  J. Cavaillé,et al.  New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. , 2005, Biomacromolecules.

[101]  O. Ikkala,et al.  Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. , 2007, Biomacromolecules.

[102]  R. Brown,et al.  Cellulose biosynthesis: current views and evolving concepts. , 2005, Annals of botany.

[103]  K. Oksman,et al.  Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials , 2007 .

[104]  Kestur Gundappa Satyanarayana,et al.  Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications , 2007 .

[105]  Alessandro Gandini,et al.  Chemical Modification of Wood , 2008 .

[106]  Hiroyuki Yano,et al.  The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites , 2004 .

[107]  P. Stenius,et al.  Water‐in‐oil Emulsions Stabilized by Hydrophobized Microfibrillated Cellulose , 2007 .

[108]  K. Mörseburg,et al.  Assessing the combined benefits of clay and nanofibrillated cellulose in layered TMP-based sheets , 2009 .

[109]  Mark Stumborg,et al.  Green composites reinforced with hemp nanocrystals in plasticized starch , 2008 .

[110]  D. Gray,et al.  Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose , 1998 .

[111]  A. N. Nakagaito,et al.  Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process , 2009 .

[112]  L. Heux,et al.  Gas-phase surface esterification of cellulose microfibrils and whiskers. , 2009, Biomacromolecules.

[113]  Kestur Gundappa Satyanarayana,et al.  Characterization of Natural Fibers , 2007 .

[114]  Youssef Habibi,et al.  Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers , 2009 .

[115]  Ali Khademhosseini,et al.  Nanobiotechnology drug deliery and tissue engineering drug delivery and tissue engineering , 2006 .

[116]  H. Yano,et al.  The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites , 2009 .

[117]  M. L. Cerrada,et al.  Surface silylation of cellulose microfibrils: preparation and rheological properties , 2004 .

[118]  C. Graillat,et al.  New waterborne epoxy coatings based on cellulose nanofillers , 2001 .

[119]  M. Rong,et al.  The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites , 2001 .

[120]  M. Roman,et al.  Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. , 2005, Biomacromolecules.

[121]  Akira Isogai,et al.  Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. , 2009, Biomacromolecules.

[122]  Redouane Borsali,et al.  Rodlike Cellulose Microcrystals: Structure, Properties, and Applications , 2004 .

[123]  Birgit Braun,et al.  Cellulosic nanowhiskers. Theory and application of light scattering from polydisperse spheroids in the Rayleigh-Gans-Debye regime. , 2008, Biomacromolecules.

[124]  Susan Selke,et al.  Natural Fibers, Biopolymers, and Biocomposites: An Introduction , 2005 .

[125]  L. Drzal,et al.  PREPARATION AND PROPERTIES OF MICROFIBRILLATED CELLULOSE POLYVINYL ALCOHOL COMPOSITE MATERIALS , 2008 .

[126]  J. Kardos,et al.  Moduli of Crystalline Polymers Employing Composite Theory , 1972 .

[127]  Mikael S. Hedenqvist,et al.  Reduced water vapour sorption in cellulose nanocomposites with starch matrix , 2009 .

[128]  T. Trindade,et al.  Nanocompósitos de Matriz Polimérica: Estratégias de Síntese de Materiais Híbridos , 2004 .

[129]  F. Morehead,et al.  Liquid Crystal Systems from Fibrillar Polysaccharides , 1959, Nature.

[130]  A. Dufresne,et al.  Tangling Effect in Fibrillated Cellulose Reinforced Nanocomposites , 2004 .

[131]  A. Gandini,et al.  Monomers, Polymers and Composites from Renewable Resources , 2008 .

[132]  J. Hamilton,et al.  Microfibrillated cellulose: morphology and accessibility , 1983 .

[133]  J. Capadona,et al.  Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. , 2007, Biomacromolecules.

[134]  A. Dufresne,et al.  Thermoplastic Nanocomposites Filled With Wheat Straw Cellulose Whiskers. Part II: Effect of Processing and Modeling , 1997 .

[135]  W. Thielemans,et al.  Permselective nanostructured membranes based on cellulose nanowhiskers , 2009 .

[136]  A. Dufresne,et al.  Physico-Chemical Characterization of Palm from Phoenix Dactylifera-L, Preparation of Cellulose Whiskers and Natural Rubber-Based Nanocomposites , 2009 .

[137]  Kestur Gundappa Satyanarayana,et al.  Natural fibre-polymer composites , 1990 .

[138]  H. M. Azeredo Nanocomposites for food packaging applications , 2009 .

[139]  P. Wambua,et al.  Natural fibres: can they replace glass in fibre reinforced plastics? , 2001 .

[140]  M. Tsuji,et al.  Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[141]  심철호 분쇄공정변수가 Microcrystalline cellulose의 비표면적에 미치는 영향 , 2006 .

[142]  K. R. Sandberg,et al.  Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential , 1983 .

[143]  S. Kamel,et al.  Nanotechnology and its applications in lignocellulosic composites, a mini review , 2007 .

[144]  K. Oksman,et al.  Novel nanocomposites based on polyurethane and micro fibrillated cellulose , 2008 .