Ultra-stable, widely tunable and absolutely linked mid-IR coherent source.

We report on a new coherent source that, using a phase-lock scheme to an optical frequency-comb synthesizer, achieves a 10-Hz intrinsic linewidth, is tunable from 4 to 4.5 microm with a presettable absolute frequency and, when coupled to a high-finesse cavity, can provide a short-term absorption sensitivity of 1.3 x 10(-11) cm(-1)Hz,(-1/2). These unique spectral features make this source a precise tool for molecular physics.

[1]  Jérôme Faist,et al.  External cavity quantum cascade laser , 2010 .

[2]  Jun Ye,et al.  Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm. , 2009, Optics letters.

[3]  R. Grimm,et al.  Ultracold triplet molecules in the rovibrational ground state. , 2008, Physical review letters.

[4]  A. Rudenko,et al.  Recoil-ion momentum distributions for two-photon double ionization of He and Ne by 44 eV free-electron laser radiation. , 2008, Physical review letters.

[5]  T. Hänsch Nobel Lecture: Passion for precision* , 2006 .

[6]  P. Maddaloni,et al.  Mid-infrared fibre-based optical comb , 2006 .

[7]  L. Balicas,et al.  Sr2RhO4: a new, clean correlated electron metal , 2006 .

[8]  Paolo De Natale,et al.  A comb-referenced difference-frequency spectrometer for cavity ring-down spectroscopy in the 4.5 µm region , 2006 .

[9]  Z. Hussain,et al.  Fermi surface and quasiparticle excitations of Sr2RhO4. , 2006, Physical review letters.

[10]  P. Petitjean,et al.  Indication of a cosmological variation of the proton-electron mass ratio based on laboratory measurement and reanalysis of H2 spectra. , 2006, Physical review letters.

[11]  A. Peters,et al.  Combination of a continuous-wave optical parametric oscillator and a femtosecond frequency comb for optical frequency metrology. , 2005, Optics letters.

[12]  P. De Natale,et al.  A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[13]  G. Giusfredi,et al.  Frequency-comb-based absolute frequency measurements in the mid-infrared with a difference-frequency spectrometer. , 2005, Optics letters.

[14]  S. Schiller,et al.  Tests of time independence of the electron and nuclear masses with ultracold molecules , 2005 .

[15]  J. Ullrich,et al.  Reply to "Comment on `Appearance and disappearance of the second Born effects in the (e,3e) reaction on He' " , 2005 .

[16]  K Feder,et al.  High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation. , 2004, Optics express.

[17]  S. Borri,et al.  Power-boosted difference-frequency source for high-resolution infrared spectroscopy , 2003 .

[18]  P. Lazzeretti,et al.  Parity-violation effect on vibrational spectra , 2003 .

[19]  Francesca Shearer,et al.  shifts in electron capture at low collision energies: Enhanced role of the target post collision interactions , 2003 .

[20]  Simone Borri,et al.  Low-power Lamb-dip spectroscopy of very weak CO(2) transitions near 4.25 mum. , 2002, Optics letters.

[21]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[22]  T. L. Myers,et al.  Free-running frequency stability of mid-infrared quantum cascade lasers. , 2002, Optics letters.

[23]  H. Telle,et al.  Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements , 2001, physics/0107037.

[24]  P Cancio,et al.  Search for exchange-antisymmetric states for spin-0 particles at the 10(-11) level. , 2001, Physical review letters.

[25]  A. Gatti,et al.  Quantum fluctuations in a continuous vectorial Kerr cavity model , 2000, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).

[26]  Hall,et al.  Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb , 2000, Physical review letters.

[27]  M. Modugno,et al.  Testing the symmetrization postulate on molecules with three identical nuclei , 2000, quant-ph/0003118.

[28]  L. Sokoloff,et al.  In vivo veritas: probing brain function through the use of quantitative in vivo biochemical techniques. , 2000, Annual review of physiology.

[29]  C. Bordé,et al.  LIMIT ON THE PARITY NONCONSERVING ENERGY DIFFERENCE BETWEEN THE ENANTIOMERS OF A CHIRAL MOLECULE BY LASER SPECTROSCOPY , 1999 .

[30]  Flavio C. Cruz,et al.  Visible Lasers with Subhertz Linewidths, | NIST , 1999 .

[31]  Jun Ye,et al.  Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy , 1998 .

[32]  D. Romanini,et al.  CW cavity ring down spectroscopy , 1997 .

[33]  L. Goldberg,et al.  Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO/sub 3/ , 1994, IEEE Photonics Technology Letters.

[34]  G. Rempe,et al.  Measurement of ultralow losses in an optical interferometer. , 1992, Optics letters.

[35]  Greenberg Particles with small violations of Fermi or Bose statistics. , 1991, Physical review. D, Particles and fields.

[36]  L. Hollberg,et al.  Frequency stabilization of semiconductor lasers by resonant optical feedback. , 1987, Optics letters.

[37]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[38]  V. Letokhov On difference of energy levels of left and right molecules due to weak interactions , 1975 .

[39]  N. Bloembergen,et al.  Interactions between light waves in a nonlinear dielectric , 1962 .