A Quantitative Ergodic Theory Proof of Szemerédi's Theorem
暂无分享,去创建一个
[1] Terence Tao,et al. The Gaussian primes contain arbitrarily shaped constellations , 2005 .
[2] H. Furstenberg,et al. A density version of the Hales-Jewett theorem , 1991 .
[3] Saharon Shelah,et al. Primitive recursive bounds for van der Waerden numbers , 1988 .
[4] H. Furstenberg,et al. An ergodic Szemerédi theorem for commuting transformations , 1978 .
[5] T. Tao,et al. The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.
[6] Vitaly Bergelson,et al. Polynomial extensions of van der Waerden’s and Szemerédi’s theorems , 1996 .
[7] Vojtech Rödl,et al. Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.
[8] Ramsey Theory,et al. Ramsey Theory , 2020, Set Theory and Foundations of Mathematics: An Introduction to Mathematical Logic.
[9] W. T. Gowers,et al. Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .
[10] Peter J. Cameron,et al. Some sequences of integers , 1989, Discret. Math..
[11] W. T. Gowers,et al. Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.
[12] Matthew Foreman,et al. The complexity of the collection of measure-distal transformations , 1996, Ergodic Theory and Dynamical Systems.
[13] Terence Tao. Szemerédi's regularity lemma revisited , 2006, Contributions Discret. Math..
[14] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .
[15] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[16] Tamar Ziegler,et al. Universal characteristic factors and Furstenberg averages , 2004, math/0403212.
[17] K. F. Roth. Irregularities of sequences relative to arithmetic progressions , 1967 .
[18] M. Simonovits,et al. Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .
[19] W. T. Gowers,et al. A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .
[20] Paul Erdös,et al. On Some Sequences of Integers , 1936 .
[21] Jozef Skokan,et al. Applications of the regularity lemma for uniform hypergraphs , 2006 .
[22] P. Varnavides,et al. On Certain Sets of Positive Density , 1959 .
[23] E. Szemerédi. Regular Partitions of Graphs , 1975 .
[24] J. Spencer. Ramsey Theory , 1990 .
[25] Jean Bourgain,et al. On Triples in Arithmetic Progression , 1999 .
[26] Vojtech Rödl,et al. Extremal problems on set systems , 2002, Random Struct. Algorithms.
[27] Vitaly Bergelson,et al. Set-polynomials and polynomial extension of the Hales-Jewett Theorem , 1999 .
[28] E. Szemeri~di,et al. On Sets of Integers Containing No Four Elements in Arithmetic Progression , .
[29] D. Ornstein,et al. The ergodic theoretical proof of Szemerédi's theorem , 1982 .
[30] B. M. Fulk. MATH , 1992 .
[31] W. T. Gowers,et al. A new proof of Szemerédi's theorem , 2001 .
[32] J. Girard. Herbrand's Theorem and Proof-Theory , 1982 .
[33] József Solymosi,et al. A Note on a Question of Erdős and Graham , 2004, Combinatorics, Probability and Computing.
[34] V. Rödl,et al. The counting lemma for regular k-uniform hypergraphs , 2006 .
[35] B. Host,et al. ASPECTS OF UNIFORMITY IN RECURRENCE , 2000 .
[36] K. F. Roth. On Certain Sets of Integers , 1953 .
[37] H. Furstenberg,et al. An ergodic Szemerédi theorem for IP-systems and combinatorial theory , 1985 .
[38] Vojtech Rödl,et al. Applications of the regularity lemma for uniform hypergraphs , 2006, Random Struct. Algorithms.
[39] W. T. Gowers,et al. A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four , 1998 .
[40] Bryna Kra,et al. Nonconventional ergodic averages and nilmanifolds , 2005 .
[41] J. Solymosi. Note on a Generalization of Roth’s Theorem , 2003 .
[42] Vojtech Rödl,et al. The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.
[43] Mark Walters,et al. Combinatorial Proofs of the Polynomial van der Waerden Theorem and the Polynomial Hales–Jewett Theorem , 2000 .
[44] A SZEMERI DI TYPE THEOREM FOR SETS OF POSITIVE DENSITY IN R k , 2022 .
[45] Ben Green,et al. AN INVERSE THEOREM FOR THE GOWERS $U^3(G)$ NORM , 2008, Proceedings of the Edinburgh Mathematical Society.
[46] D. R. Heath-Brown. Integer Sets Containing No Arithmetic Progressions , 1987 .
[47] Mathias Schacht,et al. Density theorems and extremal hypergraph problems , 2006 .