Regularized estimation of mixture models for robust pseudo-relevance feedback
暂无分享,去创建一个
[1] W. Bruce Croft,et al. Improving the effectiveness of information retrieval with local context analysis , 2000, TOIS.
[2] W. Bruce Croft,et al. Relevance-Based Language Models , 2001, SIGIR '01.
[3] Donna K. Harman,et al. The NRRC reliable information access (RIA) workshop , 2004, SIGIR '04.
[4] Luo Si,et al. Effect of varying number of documents in blind feedback: analysis of the 2003 NRRC RIA workshop "bf_numdocs" experiment suite , 2004, SIGIR '04.
[5] John D. Lafferty,et al. Model-based feedback in the language modeling approach to information retrieval , 2001, CIKM '01.
[6] J. J. Rocchio,et al. Relevance feedback in information retrieval , 1971 .
[7] Stephen E. Robertson,et al. Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..
[8] Djoerd Hiemstra,et al. Term-specific smoothing for the language modeling approach to information retrieval: the importance of a query term , 2002, SIGIR '02.
[9] W. Bruce Croft,et al. Query expansion using local and global document analysis , 1996, SIGIR '96.
[10] John D. Lafferty,et al. A study of smoothing methods for language models applied to Ad Hoc information retrieval , 2001, SIGIR '01.
[11] Tetsuya Sakai,et al. Flexible pseudo-relevance feedback via selective sampling , 2005, TALIP.
[12] David A. Evans,et al. Design and Evaluation of the CLARIT-TREC-2 System , 1993, TREC.
[13] G. McLachlan,et al. The EM algorithm and extensions , 1996 .
[14] Tao Tao,et al. A Mixture Clustering Model for Pseudo Feedback in Information Retrieval , 2004 .
[15] Carmel Domshlak,et al. Better than the real thing?: iterative pseudo-query processing using cluster-based language models , 2005, SIGIR '05.