More Barriers for Rank Methods, via a "numeric to Symbolic" Transfer

We prove new barrier results in arithmetic complexity theory, showing severe limitations of natural lifting (aka escalation) techniques. For example, we prove that even optimal rank lower bounds on k-tensors cannot yield non-trivial lower bounds on the rank of d-tensors, for any constant d larger than k. This significantly extends recent barrier results on the limits of (matrix) rank methods by [EGOW17], which handles the (very important) case k=2. Our generalization requires the development of new technical tools and results in algebraic geometry, which are interesting in their own right and possibly applicable elsewhere. The basic issue they probe is the relation between numeric and symbolic rank of tensors, essential in the proofs of previous and current barriers. Our main technical result implies that for every symbolic k-tensor (namely one whose entries are polynomials in some set of variables), if the tensor rank is small for every evaluation of the variables, then it is small symbolically. This statement is obvious for k=2. To prove an analogous statement for k larger than 2 we develop a "numeric to symbolic'' transfer of algebraic %analytic relations to algebraic %analytic functions, somewhat in the spirit of the implicit function theorem. It applies in the general setting of inclusion of images of polynomial maps, in the form appearing in Raz's elusive functions approach to proving VP ≠ VNP. We give a toy application showing how our transfer theorem may be useful in pursuing this approach to prove arithmetic complexity lower bounds.

[1]  H. T. H. PIAGGIO,et al.  Foundations of Algebraic Geometry , 1948, Nature.

[2]  Alexander Grothendieck,et al.  Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie , 1966 .

[3]  T. Willmore Algebraic Geometry , 1973, Nature.

[4]  Johan Håstad,et al.  Tensor Rank is NP-Complete , 1989, ICALP.

[5]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[6]  Alexander A. Razborov,et al.  Applications of matrix methods to the theory of lower bounds in computational complexity , 1990, Comb..

[7]  Noam Nisan,et al.  Lower bounds for non-commutative computation , 1991, STOC '91.

[8]  Günter Tamme Introduction to étale cohomology , 1994 .

[9]  Ran Raz,et al.  Lower bounds for cutting planes proofs with small coefficients , 1995, STOC '95.

[10]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[11]  Vassil Kanev Chordal varieties of Veronese varieties and catalecticant matrices , 1998 .

[12]  Ran Raz,et al.  Separation of the Monotone NC Hierarchy , 1999, Comb..

[13]  HierarchyRan Raz,et al.  Separation of the Monotone NC , 1999 .

[14]  A. Iarrobino,et al.  Power Sums, Gorenstein Algebras, and Determinantal Loci , 2000 .

[15]  Noam Nisan,et al.  Lower bounds on arithmetic circuits via partial derivatives , 2005, computational complexity.

[16]  J. Landsberg,et al.  Generalizations of Strassen's Equations for Secant Varieties of Segre Varieties , 2006, math/0601097.

[17]  Eric Allender,et al.  Amplifying Lower Bounds by Means of Self-Reducibility , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[18]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..

[19]  Ran Raz Elusive functions and lower bounds for arithmetic circuits , 2008, STOC '08.

[20]  J. M. Landsberg,et al.  On the Ranks and Border Ranks of Symmetric Tensors , 2009, Found. Comput. Math..

[21]  Avi Wigderson,et al.  Non-commutative circuits and the sum-of-squares problem , 2010, STOC '10.

[22]  David G. Glynn,et al.  The permanent of a square matrix , 2010, Eur. J. Comb..

[23]  Boris Alexeev,et al.  Tensor Rank: Some Lower and Upper Bounds , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[24]  J. Landsberg,et al.  Equations for secant varieties of Veronese and other varieties , 2011, 1111.4567.

[25]  Enrico Carlini,et al.  The Solution to Waring's Problem for Monomials , 2011 .

[26]  Neeraj Kayal An exponential lower bound for the sum of powers of bounded degree polynomials , 2012, Electron. Colloquium Comput. Complex..

[27]  D. Arapura An Introduction to Etale Cohomology , 2012 .

[28]  Neeraj Kayal,et al.  Approaching the Chasm at Depth Four , 2013, 2013 IEEE Conference on Computational Complexity.

[29]  Zach Teitler,et al.  Waring Decompositions of Monomials , 2012, 1201.2922.

[30]  Kristian Ranestad,et al.  On the cactus rank of cubic forms , 2011, J. Symb. Comput..

[31]  Shubhangi Saraf,et al.  On the Power of Homogeneous Depth 4 Arithmetic Circuits , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[32]  Cameron Farnsworth,et al.  Koszul-Young Flattenings and Symmetric Border Rank of the Determinant , 2015, ArXiv.

[33]  J. M. Landsberg Nontriviality of equations and explicit tensors in Cm⊗Cm⊗Cm of border rank at least 2m−2 , 2015 .

[34]  J. M. Landsberg Nontriviality of equations and explicit tensors in C m ⊗ C m ⊗ C m of border rank at least 2 m − 2 J , 2015 .

[35]  Harm Derksen,et al.  On non-commutative rank and tensor rank , 2016, 1606.06701.

[36]  Toniann Pitassi,et al.  Query-to-Communication Lifting for BPP , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[37]  Avi Wigderson,et al.  Barriers for Rank Methods in Arithmetic Complexity , 2017, Electron. Colloquium Comput. Complex..

[38]  Pritish Kamath,et al.  Adventures in Monotone Complexity and TFNP , 2018, Electron. Colloquium Comput. Complex..

[39]  Visu Makam,et al.  Explicit tensors of border rank at least 2d−2 in Kd ⊗ Kd ⊗ Kd in arbitrary characteristic , 2018, Linear and Multilinear Algebra.

[40]  Yaroslav Shitov,et al.  A Counterexample to Comon's Conjecture , 2017, SIAM J. Appl. Algebra Geom..

[41]  Toniann Pitassi,et al.  The Landscape of Communication Complexity Classes , 2018, computational complexity.

[42]  J. M. Landsberg,et al.  Explicit polynomial sequences with maximal spaces of partial derivatives and a question of K. Mulmuley , 2017, Theory Comput..