Quantifying temporal bone morphology of great apes and humans: an approach using geometric morphometrics

The hominid temporal bone offers a complex array of morphology that is linked to several different functional systems. Its frequent preservation in the fossil record gives the temporal bone added significance in the study of human evolution, but its morphology has proven difficult to quantify. In this study we use techniques of 3D geometric morphometrics to quantify differences among humans and great apes and discuss the results in a phylogenetic context. Twenty‐three landmarks on the ectocranial surface of the temporal bone provide a high level of anatomical detail. Generalized Procrustes analysis (GPA) is used to register (adjust for position, orientation and scale) landmark data from 405 adults representing Homo, Pan, Gorilla and Pongo. Principal components analysis of residuals from the GPA shows that the major source of variation is between humans and apes. Human characteristics such as a coronally orientated petrous axis, a deep mandibular fossa, a projecting mastoid process, and reduced lateral extension of the tympanic element strongly impact the analysis. In phenetic cluster analyses, gorillas and orangutans group together with respect to chimpanzees, and all apes group together with respect to humans. Thus, the analysis contradicts depictions of African apes as a single morphotype. Gorillas and orangutans lack the extensive preglenoid surface of chimpanzees, and their mastoid processes are less medially inflected. These and other characters shared by gorillas and orangutans are probably primitive for the African hominid clade.

[1]  L. F. Marcus,et al.  Advances in Morphometrics , 1996, NATO ASI Series.

[2]  F. James Rohlf On the use of shape spaces to compare morphometric methods , 2000 .

[3]  C. Ward,et al.  Events in Hominoid Evolution , 1997 .

[4]  Clark We Observations on the anatomy of the fossil Australopithecinae. , 1947 .

[5]  P. O’Higgins The study of morphological variation in the hominid fossil record: biology, landmarks and geometry , 2000, Journal of anatomy.

[6]  C. Stringer,et al.  Geometric morphometric study of the regional variation of modern human craniofacial form. , 2002, American journal of physical anthropology.

[7]  S. Ward,et al.  The taxonomic status of the Chemeron temporal (KNM-BC 1). , 2002, Journal of human evolution.

[8]  I. Martínez,et al.  The temporal bones from Sima de los Huesos Middle Pleistocene site (Sierra de Atapuerca, Spain). A phylogenetic approach. , 1997, Journal of human evolution.

[9]  T. White,et al.  Australopithecus africanus: Its Phyletic Position Reconsidered , 1983 .

[10]  S. Ward,et al.  Earliest Homo , 1992, Nature.

[11]  A. A. Kanthack,et al.  Anatomical society of Great Britain and Ireland , 2002, Journal of anatomy and physiology.

[12]  A.Brigitte Demes,et al.  Anthropologie. Handbuch der vergleichenden biologie des menschen , 1991 .

[13]  C. Zollikofer,et al.  Neanderthal cranial ontogeny and its implications for late hominid diversity , 2001, Nature.

[14]  Y. Rak,et al.  The Importance of Species Taxa in Paleoanthropology and an Argument for the Phylogenetic Concept of the Species Category , 1993 .

[15]  T. White,et al.  Cranial morphology of Australopithecus afarensis: a comparative study based on a composite reconstruction of the adult skull. , 1984, American journal of physical anthropology.

[16]  J. M. Lynch,et al.  Geometric morphometrics in primatology: craniofacial variation in Homo sapiens and Pan troglodytes. , 1996, Folia primatologica; international journal of primatology.

[17]  B. Wood,et al.  Basicranial anatomy of Plio-Pleistocene hominids from East and South Africa. , 1982, American journal of physical anthropology.

[18]  P. Tobias,et al.  A large male hominin cranium from Sterkfontein, South Africa, and the status of Australopithecus africanus. , 1999, Journal of human evolution.

[19]  B. Wood,et al.  How reliable are human phylogenetic hypotheses? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[20]  B. Wood,et al.  Metrical analysis of the basicranium of extant hominoids and Australopithecus , 1981 .

[21]  C. Bergé,et al.  Étude des hétérochronies par superposition procruste : application aux crânes de primates Hominoidea , 2001 .

[22]  F. Rohlf Shape Statistics: Procrustes Superimpositions and Tangent Spaces , 1999 .

[23]  P. Andrews Evolution and environment in the Hominoidea , 1992, Nature.

[24]  C. Goodall Procrustes methods in the statistical analysis of shape , 1991 .

[25]  P. O'higgins,et al.  Facial growth and the ontogeny of morphological variation within and between the primates Cebus apella and Cercocebus torquatus , 2001 .

[26]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  A. Jacobson,et al.  Morphometric tools for landmark data , 1993 .

[28]  B. Shea Paedomorphosis and neoteny in the pygmy chimpanzee. , 1983, Science.

[29]  John M. Lynch,et al.  Sexual Dimorphism in the Craniofacial Skeleton of Modern Humans , 1996 .

[30]  Lucia Allen Yaroch,et al.  Shape analysis using the thin‐plate spline: Neanderthal cranial shape as an example , 1996 .

[31]  D. Strait,et al.  A reappraisal of early hominid phylogeny. , 1997, Journal of human evolution.

[32]  E. H. Ashton,et al.  The anatomy of the articular fossa (fossa mandibularis) in man and apes. , 1954, American journal of physical anthropology.

[33]  P. Tobias The skulls, endocasts, and teeth of homo habilis , 1993 .

[34]  Antonio Rosas,et al.  Thin-plate spline analysis of allometry and sexual dimorphism in the human craniofacial complex. , 2002, American journal of physical anthropology.

[35]  B. Shea Ontogenetic Allometry and Scaling , 1985 .

[36]  P. O'higgins,et al.  Facial growth in Cercocebus torquatus: an application of three‐dimensional geometric morphometric techniques to the study of morphological variation , 1998, Journal of anatomy.

[37]  P. Tobias,et al.  The cranium and maxillary dentition of Australopithecus (Zinjanthropus) boisei , 1967 .

[38]  F J Rohlf,et al.  Statistical power comparisons among alternative morphometric methods. , 2000, American journal of physical anthropology.

[39]  F. Rohlf,et al.  Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks , 1990 .

[40]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[41]  E. H. Ashton Olduvai Gorge. Vol. 2. The Cranium and Maxillary Dentition of Australopithecus (Zinjanthropus) boisei , 1968 .

[42]  W. E. Clark Observations on the anatomy of the fossil Australopithecinae. , 1947, Journal of anatomy.