Manycore Parallel Computing for a Hybridizable Discontinuous Galerkin Nested Multigrid Method
暂无分享,去创建一个
[1] Oliver Bröker,et al. Sparse approximate inverse smoothers for geometric and algebraic multigrid , 2002 .
[2] P. W. Hemker,et al. Fourier two-level analysis for higher dimensional discontinuous Galerkin discretisation , 2002 .
[3] Jonathan J. Hu,et al. Parallel multigrid smoothing: polynomial versus Gauss--Seidel , 2003 .
[4] Robert Michael Kirby,et al. From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low- and high-order discretisations , 2010, J. Comput. Phys..
[5] Jayadeep Gopalakrishnan,et al. A convergent multigrid cycle for the hybridized mixed method , 2009, Numer. Linear Algebra Appl..
[6] Jack Dongarra,et al. Block-asynchronous multigrid smoothers for GPU-accelerated systems , 2011 .
[7] Clint Dawson,et al. A Hybridized Discontinuous Galerkin Method for the Nonlinear Korteweg–de Vries Equation , 2016, J. Sci. Comput..
[8] S. Sherwin,et al. From h to p efficiently: Strategy selection for operator evaluation on hexahedral and tetrahedral elements , 2011 .
[9] Guido Kanschat,et al. A multilevel discontinuous Galerkin method , 2003, Numerische Mathematik.
[10] Olaf Schenk,et al. Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..
[11] Pieter W. Hemker,et al. Two-Level Fourier Analysis of a Multigrid Approach for Discontinuous Galerkin Discretization , 2003, SIAM J. Sci. Comput..
[12] Bo Dong,et al. A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems , 2008, Math. Comput..
[13] Sébastien Loisel,et al. On Hybrid Multigrid-Schwarz Algorithms , 2008, J. Sci. Comput..
[14] Jörg Stiller,et al. Robust multigrid for high-order discontinuous Galerkin methods: A fast Poisson solver suitable for high-aspect ratio Cartesian grids , 2016, J. Comput. Phys..
[15] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[16] Xevi Roca,et al. GPU-accelerated sparse matrix-vector product for a hybridizable discontinuous Galerkin method , 2011 .
[17] R. P. Fedorenko. The speed of convergence of one iterative process , 1964 .
[18] Paola F. Antonietti,et al. Multigrid Algorithms for hp-Discontinuous Galerkin Discretizations of Elliptic Problems , 2013, SIAM J. Numer. Anal..
[19] P. Wesseling. An Introduction to Multigrid Methods , 1992 .
[20] Maurice W. Benson,et al. Frequency domain behavior of a set of parallel multigrid smoothing operators , 1990, Int. J. Comput. Math..
[21] Bo Dong,et al. A Hybridizable Discontinuous Galerkin Method for Steady-State Convection-Diffusion-Reaction Problems , 2009, SIAM J. Sci. Comput..
[22] Daan Huybrechs,et al. Explicit barycentric weights for polynomial interpolation in the roots or extrema of classical orthogonal polynomials , 2012, Math. Comput..
[23] S. C. Brenner,et al. Convergence of Multigrid Algorithms for Interior Penalty Methods , 2005 .
[24] Achi Brandt,et al. Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Revised Edition , 2011 .
[25] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[26] J. Peraire,et al. Efficiency of high‐order elements for continuous and discontinuous Galerkin methods , 2013 .
[27] Lloyd N. Trefethen,et al. Barycentric Lagrange Interpolation , 2004, SIAM Rev..
[28] Paul F. Fischer,et al. Hybrid Multigrid/Schwarz Algorithms for the Spectral Element Method , 2005, J. Sci. Comput..
[29] Robert Michael Kirby,et al. To CG or to HDG: A Comparative Study , 2012, J. Sci. Comput..
[30] Gabriel Wittum,et al. Additive and multiplicative multi-grid — A comparison , 1998, Computing.
[31] Wolfgang Hackbusch,et al. Multi-grid methods and applications , 1985, Springer series in computational mathematics.
[32] Susanne C. Brenner,et al. Multigrid methods for the symmetric interior penalty method on graded meshes , 2009, Numer. Linear Algebra Appl..
[33] Artem Napov,et al. When does two‐grid optimality carry over to the V‐cycle? , 2009, Numer. Linear Algebra Appl..
[34] Raytcho D. Lazarov,et al. Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..
[35] William F. Mitchell,et al. The hp‐multigrid method applied to hp‐adaptive refinement of triangular grids , 2010, Numer. Linear Algebra Appl..
[36] Jörg Stiller,et al. Nonuniformly Weighted Schwarz Smoothers for Spectral Element Multigrid , 2015, J. Sci. Comput..
[37] Robert Michael Kirby,et al. Exploiting Batch Processing on Streaming Architectures to Solve 2D Elliptic Finite Element Problems: A Hybridized Discontinuous Galerkin (HDG) Case Study , 2013, Journal of Scientific Computing.
[38] Katharina Kormann,et al. A generic interface for parallel cell-based finite element operator application , 2012 .
[39] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[40] Paola F. Antonietti,et al. Multigrid Algorithms for High Order Discontinuous Galerkin Methods , 2016, IEEE CSE 2016.
[41] Shuguang Tan,et al. Iterative solvers for hybridized finite element methods , 2009 .
[42] Bernardo Cockburn,et al. Multigrid for an HDG method , 2013, IMA Journal of Numerical Analysis.
[43] Avinash Sodani,et al. Intel Xeon Phi Processor High Performance Programming: Knights Landing Edition 2nd Edition , 2016 .
[44] Pieter W. Hemker,et al. Fourier two‐level analysis for discontinuous Galerkin discretization with linear elements , 2004, Numer. Linear Algebra Appl..
[45] Peter Bastian. Load Balancing for Adaptive Multigrid Methods , 1998, SIAM J. Sci. Comput..
[46] Samuel Williams,et al. Roofline: an insightful visual performance model for multicore architectures , 2009, CACM.