Stability of viscous long liquid filaments

We study the collapse of an axisymmetric liquid filament both analytically and by means of a numerical model. The liquid filament, also known as ligament, may either collapse stably into a single droplet or break up into multiple droplets. The dynamics of the filament are governed by the viscosity and the aspect ratio, and the initial perturbations of its surface. We find that the instability of long viscous filaments can be completely explained by the Rayleigh-Plateau instability, whereas a low viscous filament can also break up due to end pinching. We analytically derive the transition between stable collapse and breakup in the Ohnesorge number versus aspect ratio phase space. Our result is confirmed by numerical simulations based on the slender jet approximation and explains recent experimental findings by Castrejon-Pita et al.

[1]  Geoffrey Ingram Taylor,et al.  The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  Osman A. Basaran,et al.  Dynamics and breakup of a contracting liquid filament , 2004, Journal of Fluid Mechanics.

[3]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[4]  H. Wijshoff,et al.  The dynamics of the piezo inkjet printhead operation , 2010 .

[5]  Fred E. C. Culick,et al.  Comments on a Ruptured Soap Film , 1960 .

[6]  N. Lindblad,et al.  Stability of an Electrified Liquid Jet , 1967 .

[7]  M. Brenner,et al.  ON THE BURSTING OF VISCOUS FILMS , 1999 .

[8]  M. Brenner,et al.  A Cascade of Structure in a Drop Falling from a Faucet , 1994, Science.

[9]  John R. Lister,et al.  SELF-SIMILAR CAPILLARY PINCHOFF OF AN INVISCID FLUID , 1997 .

[10]  T. Dupont,et al.  Drop Formation in a One-Dimensional Approximation of the Navier-Stokes Equation , 1992, physics/0110081.

[11]  E. Villermaux,et al.  Fragmentation of stretched liquid ligaments , 2004 .

[12]  J. CLERK MAXWELL,et al.  Statique expérimentale et théorique des Liquides soumis aux seules Forces moléculaires, , 1874, Nature.

[13]  R. Schulkes,et al.  The contraction of liquid filaments , 1996, Journal of Fluid Mechanics.

[14]  J. R. Castrejón-Pita,et al.  Breakup of liquid filaments. , 2012, Physical review letters.

[15]  J. Eggers,et al.  Isolated inertialess drops cannot break up , 2005, Journal of Fluid Mechanics.

[16]  C. Weber Zum Zerfall eines Flüssigkeitsstrahles , 1931 .

[17]  Michel Versluis,et al.  iLIF: illumination by Laser-Induced Fluorescence for single flash imaging on a nanoseconds timescale , 2011 .

[18]  E. Villermaux,et al.  Bursting thin liquid films , 2005, Journal of Fluid Mechanics.

[19]  I. Hutchings,et al.  Self-similar breakup of near-inviscid liquids. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  L. Rayleigh On The Instability Of Jets , 1878 .

[21]  Howard A. Stone,et al.  An experimental study of transient effects in the breakup of viscous drops , 1986, Journal of Fluid Mechanics.

[22]  F. J. García,et al.  The measurement of growth rates in capillary jets , 2009, Journal of Fluid Mechanics.

[23]  F. Veron,et al.  Sea spray spume droplet production in high wind speeds , 2012 .

[24]  Scott D. Phillips,et al.  Computational and experimental analysis of dynamics of drop formation , 1999 .

[25]  Detlef Lohse,et al.  Breakup of diminutive Rayleigh jets , 2010, 1011.0320.

[26]  G. Taylor The dynamics of thin-sheets of fluid. I. Water bells , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[27]  T. Driessen,et al.  A regularised one-dimensional drop formation and coalescence model using a total variation diminishing (TVD) scheme on a single Eulerian grid , 2011 .

[28]  E. Villermaux,et al.  Physics of liquid jets , 2008 .